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Lecture 8 - Bayesian Experimen-

tal Design

OBJECTIVE: We address the problem of myopic Bayesian

experimental design. We demonstrate the approach on a

simple linear regression problem, where the design problem

is to choose an input point and request a label for the chosen

input. This problem is also known as active learning or value

of information. We start with linear models with Gaussian

distributions because these have analytical solutions. These

solutions will however be applicable to nonlinear models us-

ing Bayesian kernel methods known as Gaussian processes.

� BAYESIAN MYOPIC DESIGNS

Formally, the decision problem consists of the following ele-

ments:

• Experiments e: These are the actions. Which exper-
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iment should we conduct? Which question should we

ask?

• Parameters θ: These are the states. That is, the

parameters of the model we are using to represent reality.

In Bayesian modelling, we assume that we have a prior

distribution on the states.

• Data y: In the Bayesian setting, we no longer have

access to the states. Instead we make observations after

conducting an experiment and use these to update our

beliefs about the states. A priori, we don’t know which

observations our experiment will produce.

• Utilities u: These are our standard rewards.

After conducting an experiment, we make observations and

use these to update our prior p(θ) into the posterior beliefs

p(θ|y, e). This posterior becomes the updated prior for the

next decision stage.
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Schematically, we can view our problem with a decision tree

on a sequential game:

�

The rational way of choosing the best experiment, given that

we don’t know what data it will produce and that the states

are hidden, is to compute the maximum expected utility of

the experiment:

u�(e) = max
e

∫ ∫
u(y, e)p(y|θ, e)p(θ)dθdy
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The term u(y, e) is the expected utility over the posterior

parameters θ′:

u(y, e) =

∫
u(y, e, θ′)p(θ′|y, e)dθ′

Hence,

u�(e) = max
e

∫ ∫ ∫
u(y, e, θ′)p(θ′|y, e)p(y|θ, e)p(θ)dθdydθ′

This utility can also be written as follows:

u�(e) = max
e

∫ ∫
u(y, e, θ′)p(θ′|y, e)p(y|e)dydθ′

� Proof:

What are sensible choices of u(y, e)?
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� SHANNON ENTROPY

Entropy is an information theory measure of uncertainty.

The entropy of a distribution p(x) is defined as follows:

H(x) = −
∫

[log p(x)]p(x)dx

Information is defined as the negative entropy. As an exam-

ple, consider a possibly biased coin with p(x = tails) = θ.

Then,

H(x) = −θ log θ − (1 − θ) log(1 − θ)

and its plot looks like:

�
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� BAYESIAN D-DESIGNS

We can use the entropy idea to choose which question will

result in us learning a better posterior. That is, we choose

to optimize the Shannon information of the posterior distri-

bution:

u�(e) = max
e

∫ ∫ ∫ [
log p(θ′|y, e)

]
p(θ′|y, e)dθ′p(y, θ|e)dθdy

We will see later, in the linear model, that this criterion says

that we will learn the most by asking questions where we

know the least.
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� BAYESIAN A-DESIGNS

A-optimality is a popular strategy for gathering information

to identify the parameters of the model. In particular, we

can choose to optimize the following quadratic utility:

u�(e) = max
e

−
∫ ∫ ∫

(θ′−θ)TA(θ′−θ)p(θ′|y, e)dθ′p(y, θ|e)dθdy

where A is a symmetric positive matrix that emphasizes

which parts of the parameter space we consider more rel-

evant. For each possible world (weighted by the prior), the

goal is to make a good prediction of θ in squared-error loss.

That is θ′ can be thought of as our identification or guess

of the hidden possible world θ. The aim is to improve this

identification.
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� LINEAR SUPERVISED REGRESSION

Given the data {x1:n, y1:n}, with xi ∈ R
q and yi ∈ R, we

want to fit a hyper-plane that maps features of the input

f (x) ∈ R
d to y.

�
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Mathematically, the linear model prediction is expressed as

follows:

ŷ = Xθ




ŷ1

...

ŷn


 =




f1(x1) · · · fd(x1)

... ... ...

f1(xn) · · · fd(xn)







θ1

...

θd




If we have several outputs yi ∈ R
c, our linear regression

expression becomes:

�
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� MAXIMUM LIKELIHOOD

If our errors are Gaussian distributed, we can use the model

y = Xθ + N (0, σ2I)

Note that the mean of y is Xθ and that its covariance is

σ2I , where we assume that σ2 is known.

We can equivalently write this expression using the proba-

bility density of y given X and θ:

p(y|X, θ) =
(
2πσ2

)−n/2
e
− 1

2σ2 (y−Xθ)T (y−Xθ)

The maximum likelihood (ML) estimate of θ is obtained by

taking the derivative of the log-likelihood, log p(y|X, θ), and

equating to zero. The idea of maximum likelihood learning

is to maximise the likelihood of seeing some data y by mod-
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ifying the parameters (θ).

�
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� BAYESIAN LEARNING FOR LINEAR-GAUSSIAN MOD-

ELS

In Bayesian learning we incorporate our prior beliefs or pref-

erences into the model. We are interested in the posterior

distribution:

p(θ|X,y) =
p(y|X, θ)p(θ)

p(y|X)

If we choose a Gaussian prior θ ∼ N (θ0, σ
2R−1). Then, the

posterior is proportional to:

p(θ|X,y)∝(
2πσ2

)−n
2 e

− 1
2σ2 (y−Xθ)T (y−Xθ)|2πσ2R−1|−1

2e
− 1

2σ2 (θ−θ0)
T R(θ−θ0)

Our task is to rearrange terms in the exponents in order

to obtain a simple analytical expression for the posterior

distribution.
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�

p(θ|X,y) =
∣∣2πσ2Σ

∣∣−1
2 e

− 1
2σ2 (θ−µ)T Σ−1(θ−µ)
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So the posterior for θ is Gaussian with sufficient statis-

tics:

E(θ|X,y) = (XTX + R)−1(XTy + Rθ0)

cov(θ|X,y) = (XTX + R)−1σ2

The maximum a posteriori (MAP) point estimate is:

θ̂MAP = (XTX + R)−1(XTy + Rθ0)

A flat (“vague”) prior with large variance and zero mean

leads to the ML estimate.
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� LINEAR EXPERIMENTAL DESIGN

Now that we know how to compute the posterior distribu-

tion, we go back to the original problem. We know a finite

set of locations x, but we don’t know the label y as these

are assumed to be expensive to obtain. Here the experiment

is to choose a data point e = x that is best to learn a good

posterior (one that concentrates its mass on the true value

of the parameters).

Using our Gaussian posterior, the optimal D-design simpli-

fies to:

u�(e) = max
e

log |σ−2(XTX + R)|

That is, we maximize the product of eigenvalues of the in-

formation matrix.
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�
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The Bayesian A-Design with the Gaussian posterior results

in the following criterion:

u�(e) = max
e

−σ2trace
{
A(XTX + R)−1

}

That is, we minimize the sum of eigenvalues of the posterior

covariance (inverse of the posterior information matrix in the

Gaussian case), weighted by A.

There are other design criteria. In the following section, we

will consider the entropy of the predictive distribution of the

data.


