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Lecture 6 - Convergence of Sto-

chastic Approximation

OBJECTIVE: In this lecture we introduce the power-
ful theoretical concepts of Lyapunov (potential) func-
tions and martingales. These are used to prove conver-
gence of the basic stochastic approximation algorithm intro-

duced in the previous lecture.
< FIXED POINT EQUATION WITH OPERATORS

For a generic operator F', which could be Bellman’s or simply
the conditional expectation operator, the fixed point equa-

tion at the optimum 6 takes the form:

Fo* =06~
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As before, 8 can be estimated using the recursive SA algo-

rithm:
i) — g 4 o [F(;(t) _ 9<t>}
= 00 4+ a0 [(F9<t> —6")+ (6" — 0<t>)}
0 BN ) [wm (0" — g(t))}
= 99 1 oWs(w®, 9)

where w® is the Monte Carlo error resulting from using only
one sample to approximate the expectation. The random

variable s(w®), ") is the direction of update (descent).

For later developments, we need to introduce a variable de-

noting the history of the algorithm:

H, & {O(O:t)’ S(O:t—l),a(O:t)}
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< LYAPUNOV FUNCTIONS

A Lyapunov function is a potential function that is zero at
the optimum and unbounded away from it. If this function
has a single optimum and we can show that our algorithm
descends on it, then we have shown that our algorithm is

converging.
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More formally, a Lyapunov function V' : R" — R must

satisfy:
1. V(@) > 0.

2. VV(6") = 0.

In particular consider the following Lyapunov function:

V(oY) = S — ol

Then

vV (oY) =6 — e

and our SA algorithm takes the standard stochastic descent

form:

9+) — 90 4 (W™ g
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We now prove an important lemma about potential func-
tions, which basically states that the angle between the de-
scent direction and the outward gradient is more than ninety

degrees and that the steps are not "too large”.

Lemma 4 Assume Elw®|H;] = 0 and E[|w|?|H,] <
A+ B||[VV(0)||>. Then there exist constants ¢ and cy
such that

1. VV (0 E[s(w®,00)[1] < —ei|VV ()]

2. Bl s(w, )[P[H,] < c2(1+ [VV(9)]?).
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* Proof:
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* Proof: The lemma can also be proved if we instead assume that F'

is a contraction:

* Proof:
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<& MARTINGALE THEOREMS

If you ever decide to gamble, you should know about mar-
tingales. Here we simply state a powerful result about mar-

tingales:
Theorem 6 super-martingale theorem

1. Consider a mon-negative random wvariable x; > 0,

such that Blxy1|Hy < x¢, thenxy — X >0 w.p. L.

2. Consider x;,y,2z¢ > 0, such that Yy, < oo and
E[xi1|He < x¢ +y: — 24, then xy, — X > 0 and

z; — 0  w.p. 1.
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<& STOCHASTIC CONVERGENCE

We can now state the main result of this lecture:

Theorem 7 If the SA algorithm satisfies the following
assumptions under an appropriate choice of Lyapunov

function:
1. VV(OD)TE[s(w®, 0| H,] < —c||VV(0)]%
2. Ef||s(w®, 0)[P[H)] < ex(1+ | VV(0)]2).

3. o\ is a diminishing positive sequence with Y, oV =

00 and Y, al? < o0.

Then, 89 — 0*  w.p. 1.
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* Proof:

CPSC-532¢: Advanced Machine Learning

87

* Proof:
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< LIMIT DIFFERENTIAL EQUATION




