
CPSC-532c: Advanced Machine Learning 76

Lecture 6 - Convergence of Sto-

chastic Approximation

OBJECTIVE: In this lecture we introduce the power-

ful theoretical concepts of Lyapunov (potential) func-

tions and martingales. These are used to prove conver-

gence of the basic stochastic approximation algorithm intro-

duced in the previous lecture.

� FIXED POINT EQUATION WITH OPERATORS

For a generic operator F , which could be Bellman’s or simply

the conditional expectation operator, the fixed point equa-

tion at the optimum θ� takes the form:

Fθ� = θ�

CPSC-532c: Advanced Machine Learning 77

As before, θ can be estimated using the recursive SA algo-

rithm:

θ(t+1) = θ(t) + α(t)
[
Fθ(t) − θ(t)

]

= θ(t) + α(t)
[
(Fθ(t) − θ�) + (θ� − θ(t))

]

= θ(t) + α(t)
[
w(t) + (θ� − θ(t))

]

= θ(t) + α(t)s(w(t), θ(t))

where w(t) is the Monte Carlo error resulting from using only

one sample to approximate the expectation. The random

variable s(w(t), θ(t)) is the direction of update (descent).

For later developments, we need to introduce a variable de-

noting the history of the algorithm:

Ht �
{

θ(0:t), s(0:t−1), α(0:t)
}
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� LYAPUNOV FUNCTIONS

A Lyapunov function is a potential function that is zero at

the optimum and unbounded away from it. If this function

has a single optimum and we can show that our algorithm

descends on it, then we have shown that our algorithm is

converging.

�
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More formally, a Lyapunov function V : R
n �→ R must

satisfy:

1. V (θ) ≥ 0.

2. ∇V (θ�) = 0.

In particular consider the following Lyapunov function:

V (θ(t)) =
1

2
‖θ(t) − θ�‖2

2

Then

∇V (θ(t)) = θ(t) − θ�

and our SA algorithm takes the standard stochastic descent

form:

θ(t+1) = θ(t) + α(t)s(w(t), θ(t))

= θ(t) + α(t)
[
w(t) −∇V (θ(t))

]
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We now prove an important lemma about potential func-

tions, which basically states that the angle between the de-

scent direction and the outward gradient is more than ninety

degrees and that the steps are not ”too large”.

Lemma 4 Assume E[w(t)|Ht] = 0 and E[‖w(t)‖2|Ht] ≤
A + B‖∇V (θ)‖2. Then there exist constants c1 and c2

such that

1. ∇V (θ(t))TE[s(w(t), θ(t))|Ht] ≤ −c1‖∇V (θ)‖2.

2. E[‖s(w(t), θ(t))‖2|Ht] ≤ c2(1 + ‖∇V (θ)‖2).

�
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� Proof:
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� Proof:
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The lemma can also be proved if we instead assume that F

is a contraction:

� Proof:
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� MARTINGALE THEOREMS

If you ever decide to gamble, you should know about mar-

tingales. Here we simply state a powerful result about mar-

tingales:

Theorem 6 super-martingale theorem

1. Consider a non-negative random variable xt ≥ 0,

such that E[xt+1|Ht] ≤ xt, then xt −→ x ≥ 0 w.p. 1.

2. Consider xt,yt, zt ≥ 0, such that
∑

yt < ∞ and

E[xt+1|Ht] ≤ xt + yt − zt, then xt −→ x ≥ 0 and

zt −→ 0 w.p. 1.
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� STOCHASTIC CONVERGENCE

We can now state the main result of this lecture:

Theorem 7 If the SA algorithm satisfies the following

assumptions under an appropriate choice of Lyapunov

function:

1. ∇V (θ(t))TE[s(w(t), θ(t))|Ht] ≤ −c1‖∇V (θ)‖2.

2. E[‖s(w(t), θ(t))‖2|Ht] ≤ c2(1 + ‖∇V (θ)‖2).

3. α(t) is a diminishing positive sequence with
∑

t α
(t) =

∞ and
∑

t α
(t)2 < ∞.

Then, θ(t) −→ θ� w.p. 1.
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� Proof:
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� Proof:
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� LIMIT DIFFERENTIAL EQUATION

�


