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Lecture 5 - Stochastic Approxi-

mation

OBJECTIVE: This lecture introduces stochastic approx-

imation (SA) concepts for designing approximate RL algo-

rithms and proving their convergence. Instead of visiting

each state as in policy and value iteration, we will only con-

sider simulated trajectories of states. This modification en-

ables us to tackle more realistic environments, with larger

state spaces and no need to know the transition model or

reward function. The algorithms presented in this lecture

are also applicable to many other machine learning domains

including neural network training, on-line learning and para-

meter estimation in conditional and Markov random fields.
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� BANDITS: A MOTIVATING EXAMPLE

Let’s consider our K-armed bandits again:

• [States]: xi
t is the state of bandit i. The entire state is

x1:K
t ∈ X 1 × · · · × XK .

• [Actions]: at ∈ A(x) = {1, 2, . . . , K}.

• [Rewards]: rt(x
1:K
t , at) = rt(x

i
t, at = i) = rt(i).

• [Transition law]: The selected bandit evolves accord-

ing to: p(xi
t+1|xi

t).

Let’s assume that our goal is to compute the expected reward

Qt+1(i) for bandit i given that it has been chosen t+1 times.

Then we have:

Qt+1(i) =
1

t + 1

t+1∑
k=1

rk(i) = Qt(i) +
1

t + 1
[rt+1(i) − Qt(i)]



CPSC-532c: Advanced Machine Learning 65

� Proof:

Note that the new estimate is equal to the old estimate plus a

weighted difference between the old estimate and the target.

This type of update will appear over and over again.

Once some of the Q’s are known we have to deal with the

exploration/exploitation trade-off. For bandits this can be

handled with Gittin’s indices.
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� COMPUTING FIXED POINTS WITH SA

Suppose we want to solve for θ in the following stochastic

fixed point equation:

θ = E[f (θ,x)] =

∫
f (θ,x) p(x|θ) dx

We can do so by adopting the following updates:

θ(t+1) = (1 − α(t))θ(t) + α(t)f (θ(t),x(t))

where α ∈ (0, 1) and x(t) ∼ p(x|θ).

� Derivation:
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The previous update can be re-written as a Robbins-Monro

stochastic approximation:

θ(t+1) = (1 − α(t))θ(t) + α(t)
E[f(θ(t),x)] + α(t)w(t)

where

• E[f (θ(t),x)] is the mean field.

• w(t) =
{

f(θ(t),x(t)) − E[f(θ(t),x)]
}

is the stochastic

approximation error.

For convergence in a stationary regime, the learning rate

must decay to zero. Yet, it cannot decay too quickly as this

would prevent the algorithm from visiting areas in the state

space far away from the initial assignments.
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� EXAMPLE: STOCHASTIC POLICY EVALUATION

Let’s consider our familiar fixed point V = TdV :

V (i) =

n∑
j=1

p(j|i, d(i)) [r(i, d(i), j) + V (j)]

We can avoid full evaluation of the huge expectation in prac-

tice by introducing the following SA known as TD(0):

� Derivation:
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� EXAMPLE: STOCHASTIC OPTIMIZATION

Suppose we want to minimize a function L(θ) = E[Q(θ,x)].

That is, we want to solve the problem:

min
θ

∫
Q(θ,x) p(x|θ) dx

We can do this by taking the derivative of L(θ) and equating

it to zero. We can do this as follows:

�
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We can use this derivation in conjunction with SA to obtain

a stochastic gradient descent algorithm:

�

IMPORTANT: The algorithm is not stochastic because we

are adding noise to the gradient. It is stochastic because the

reward function is unknown.

Alternatives to this simple approach include stochastic

conjugate gradients and stochastic meta descent

(SMD). If the derivative is not available, we can conduct

implicit differentiation, use finite differences or the Si-

multaneous Perturbation Method.
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� LAWS OF LARGE NUMBERS

To study the asymptotic behavior of RL algorithms, we ap-

ply the strong law of large numbers (SLLN):

Theorem 5 Let x1,x2, . . . ,xk be a sequence of i.i.d. ran-

dom variables with common finite mean E[xi]. Then:

θk =
1

k

k∑
i=1

xi
a.s.−→ θ� = E[xi] w.p. 1

Here a.s. stands for almost sure convergence or conver-

gence with probability (w.p.) 1. That is, convergence occurs

for the sets with non-null probability.

The SLLN is a stronger statement than the weak law of large

numbers (WLLN) proved in the homework.

We won’t prove the SLLN as this is a simple exercise that

appears in most probability books, but we will present the

two Lemmas that are used to prove it as these can be used

CPSC-532c: Advanced Machine Learning 72

go gain intuition into how SA works.

Lemma 2 Borel Cantelli Consider the sequence of ”er-

ror” events Ek = {‖θk − θ�‖ ≥ ε} for k ≥ 1 and any

positive ε. Then the event Ek does not happen infinitely

often (i.o.):

∑
k

P (Ek) < ∞ =⇒ P (Ek i.o.) = 0

Or, in other words, θk converges almost surely to θ�.

Thus to prove SLLN’s, we first show that the sum of proba-

bilities is upper-bounded. This is typically done using Markov’s

inequality.
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Lemma 3 Markov’s inequality Let f (θ) be positive.

Then P (f(θ) ≥ ε) ≤ E[f(θ)]
ε .

�

When f(θ) = ‖θk − θ‖, we get Chebyshev’s inequality (to

be proven in the homework), which enable us to upperbound

the probabilities of error events with the variance of the error.
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Armed with these lemmas, we can attack the problem of

choosing the learning rate of SA algorithms:

θ(t+1) = (1 − α(t))θ(t) + α(t)f (θ(t),x(t))

Summing both sides over t, we have

�
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� RECURSIVE SLLN

As in the bandit problem, we can easily derive a recursive

estimator of θk.

�


