
CPSC-532c: Advanced Machine Learning 54

Lecture 4 - Value and Policy Iter-

ation

OBJECTIVE: In this lecture, we will show that the Bell-

man operator is a contraction operator. Hence, it will cause

the initial value function to contract toward the optimal

value function. We then use these mathematical results to

derive the most popular algorithms for MDPs: value itera-

tion, policy iteration and backward induction.

� CONTRACTION OPERATORS

The Bellman operator (also known as the DP operator) is

a contraction mapping with respect to the weighted

maximum norm. That is, there exists a vector ξ =

(ξ(1), . . . , ξ(n)) ∈ R
n, with positive components, and a
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scalar λ ∈ [0, 1), such that:

‖TV − TV ‖ξ ≤ λ‖V − V ‖ξ

for all vectors V and V , where the weighted maximum norm

is defined by:

‖V ‖ξ = max
i=1:n

|V (i)|
ξ(i)

This is formalized by the following theorem.

Theorem 3 Assume that the terminal state can be reached

with a stationary policy. There exists a vector ξ ∈ R
n

with positive entries such that the Bellman operators T

and Td, for all stationary policies d, are contraction op-

erators with respect to the maximum norm ‖ · ‖ξ with

λ ∈ [0, 1).
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� Proof:
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� Proof:
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� VALUE ITERATION

The existence and uniqueness of the solution to the value

fixed point equation V � = TV � is the basis for the value

iteration algorithm:

function [pi,V] = valueIteration(P, R,gamma)

% Given the (s x s’ x a) matrices P and R and discount factor gamma, use value

% iteration to find a deterministic policy pi and value function V.

theta = 10e-6; delta = theta+1; NS = size(P,2); NA = size(P,3);

V = zeros(1,NS); % INITIALIZATION

while delta >= theta % VALUE ITERATION

delta = 0;

for s = 1:NS

for a = 1:NA

a_val(a) = sum(P(s,:,a) .* (R(s,:,a) + gamma * V));

end

newv(s) = max(a_val);

end

delta = max(abs(newv-V));

V = newv;

end

for s=1:NS % FINDING A POLICY

for a = 1:NA

a_val(a) = sum(P(s,:,a) .* (R(s,:,a) + gamma * V));

end

[val, pi(s)] = max(a_val);

end
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� BACKWARD INDUCTION

Backward induction is a form of value iteration when

there is a final reward V �(xN) = r(xN) for all values of xN .

The algorithm proceeds as follows:

1. At t = N , V �(xN) = r(xN) for all xN .

2. For t = N − 1 : 1

(a) Compute the optimal value function:

V �
t = max

at

∑

xt+1

p(xt+1|xt, at) [r(xt, at,xt+1) + γV �
t+1(xt+1)]

(b) Compute the optimal policy:

π� = arg max
at

∑

xt+1

p(xt+1|xt, at) [r(xt, at,xt+1) + γV �
t+1(xt+1)]

This algorithm is often used to solve problems such as net-

work routing, deterministic resource allocation and the sec-

retary problem.
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� POLICY ITERATION

The policy iteration algorithm is an alternative to value
iteration that terminates finitely.

function [pi,V] = policyIteration(P, R, gamma)

NS=size(P,2);NA=size(P,3); theta = 10e-6;

V = zeros(1,NS); pi = ones(1,NS); policyStable = false; % INITIALIZATION

while policyStable == false % POLICY EVALUATION: SOLVE LINEAR SYSTEM.

delta = theta+1;

while delta >= theta

delta = 0;

for s = 1:NS

newv(s) = sum(P(s,:,pi(s)) .* (R(s,:,pi(s)) + gamma * V));

end

delta = max(abs(newv-V));

V = newv;

end

policyStable = true; % POLICY IMPROVEMENT

for s=1:NS

b = pi(s);

a_val = zeros(1,NA);

for a = 1:NA

a_val(a) = sum(P(s,:,a) .* (R(s,:,a) + gamma * V));

end

[val, pi(s)] = max(a_val);

if b ~= pi(s)

policyStable = false;

end

end

end
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The following theorem establishes the convergence of policy

iteration in a finite number of steps.

Theorem 4 There exists a natural number N0 such that

for all t > N0 we have Vdt = V �.

� Proof:
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� Proof:


