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Lecture 3 - Bellman Optimality

Equations

OBJECTIVE: In this lecture we will derive Bellman’s

fixed point equations. This is an efficient stochastic dynamic

programming strategy for computing the value of states in

fully observed MDPs. We will also introduce Bellman oper-

ators and show t. This is the basic idea that will be needed

to prove contractions and hence derive optimal algorithms

in the following lecture.

� VALUE FUNCTIONS

The value function of an MDP is the expectation under

a policy π of the future rewards. We deal with the undis-

counted finite horizon case first. When there are N decision
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steps to go, the value function is:

V π
N (x0) = E

[
N−1∑
t=0

rt(xt, at,xt+1) + rN(xN)

]

This expression assumes that the initial state is known to be

x0. That is, the expectation when dealing with randomized

policies is take with respect to the distribution:

p(a0|x0)p(x1|x0, a0)p(a1|x1) · · · p(xN |xN−1, aN−1)

.

Theorem 1 The value function V π
N satisfies the follow-

ing fixed point recursion:

V π
N (x0) =

∑
a0

p(a0|x0)
∑
x1

p1(x1|x0, a0)
[
r1(x0, a0,x1) + V π

N−1(x1)
]
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� Proof:
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If the policy is deterministic, the fixed point equation sim-

plifies to:

V π
N (x0) =

∑
x1

p1(x1|x0, a0)
[
r1(x0, a0,x1) + V π

N−1(x1)
]

A further simplification is obtained when the rewards de-

pend only on the present state (or equivalently when their

expectation is taken):

V π
N (x0) = r0(x0, a0) +

∑
x1

p1(x1|x0, a0)V
π
N−1(x1)

Another quantity often mentioned in the literature is the on-

going value of the state at step t. We define it as follows for

deterministic policies:
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Uπ
t (xt) = E

[
N−1∑
k=t

rk(xk, ak) + rN(xN)

]

where the expectation is taken with respect to:

p(xt+1|xt, at)p(xt+2|xt+1, at+1) · · · p(xN |xN−1, aN−1)

As before, we have a recursion for this value function:

Uπ
t (xt) = rt(xt, at) +

∑
xt+1

pt+1(xt+1|xt, at)U
π
t+1(xt+1)

� Proof:
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When dealing with infinite discounted rewards:

V π(x0) = E

[ ∞∑
t=0

γtrt(xt, at,xt+1)

]
,

we have the following recursion:

V π(x0) =
∑
x1

p1(x1|x0, a0) [r1(x0, a0,x1) + γV π(x1)]

� Proof:



CPSC-532c: Advanced Machine Learning 47

� BELLMAN’S PRINCIPLE OF OPTIMALITY

In this section, we will show how to compute the optimal

value function given that we are at state x0:

V �(x0) = max
π

V π(x0) V �
N(x0) = max

π
V π

N (x0)

We will derive an expression for the optimal policy π�.

We address the finite horizon case first.

Assume that N = 0 is the final stage. Then the optimal

value function is:

V �
0 (xN) = rN(xN)
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Now assume that there is one step to go N = 1. The optimal

value function and policy are:

� Proof:

In general we have:

V �
N(x0) = max

a

∑
x1

p1(x1|x0, a0)
[
r1(x0, a0,x1) + V �

N−1(x1)
]

In the infinite horizon case, we drop the sub-index N . The
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optimal decision is then:

d�
0(x0) = arg max

a

∑
x1

p1(x1|x0, a0)
[
r1(x0, a0,x1) + V �

N−1(x1)
]

To establish this result as well as set the theoretical ground

for designing algorithms in the next lecture, we need to in-

troduce compact notation. For simplicity, we will assume

that the state space is discrete so that the value function is

simply a vector V = (V (1), . . . , V (n)) ∈ R
n, where n is the

number of states.

The vector TV denotes the application of the Bellman op-

erator on the value vector V :

TV (i) = max
a

n∑
j=1

p(j|i, a) [r(i, a, j) + V (j)]
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We also define the operator given a policy d

TdV (i) =

n∑
j=1

p(j|i, d(i)) [r(i, d(i), j) + V (j)]

These operations allow us to write Bellman’s recursion as a

friendly linear system:

TdV = rd + PdV

The Bellman operator can be applied recursively:

T tV = T (T t−1V ) T 0V = V

Likewise, for a t-stage policy π = (d0, d1, . . . , dt−1), we have:

Td0Td1 · · ·Tdt−1V = Td0

[
Td1(· · ·Tdk−1V )

]
Lemma 1 Monotonicity: For any n-dimensional vec-

tors V and V , such that V (i) ≤ V (i) for i = 1 : n, and a
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stationary policy d, we have:

T tV (i) ≤ T tV (i)

T t
dV (i) ≤ T t

dV (i)

for all i and t.

As a final notation point, let V ≤ V be true when V (i) ≤
V (i) for all i. Then we have the following theorem (there

exist many stronger versions of this result):

Theorem 2 Assume that the terminal state can be reached

under a stationary policy and that
∑

j p(j|a, i)r(i, a, j) ≤
0, the optimal value function V � is finite and satisfies:

V � = TV �

Furthermore, V � is the only solution to the equation V =

TV and Td�V � = TV � implies the optimality of d�.
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� Proof:
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� Proof:


