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Lecture 1 - Introduction

OBJECTIVE: In this first lecture, we will introduce the

subject of this course: learning to make rational decisions

under uncertainty. We begin by stating the problem and

establishing the basic vocabulary and notation.

� LEARNING AND ACTING

Humans are remarkably good at manipulating their environ-

ment. They can probe the environment in order to gather

information and increase their knowledge. This knowledge

can in turn be used to devise better probing strategies. Hu-

mans are also very good at constructing abstract long range

plans despite the fact that they live in a world that is fraught

with constraints, conflicting goals, partial observability, un-

certainty, dynamics and nonlinearity.
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Just think of the following examples:

• A child learns by playing and interacting with the en-

vironment. Testing boundaries is key to their develop-

ment.

• A graduate student learns what questions she can ask

during class to maximize her knowledge of the subject

while avoiding possible embarrassment.

• Politicians learn complex, abstract ways of influencing

people by observing their reaction to governmental poli-

cies on same-sex-marriage, wars, tax and so on. Despite

huge uncertainty due to partial observability and lies,

many of them learn to make appropriate temporary con-

cessions that ensure huge future rewards such as being

re-elected.

In all the above examples, the agents learn to trade-off im-

mediate rewards with future rewards.
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In this course, we will investigate ways in which an agent

(decision maker or controller) can learn to make rational de-

cisions in stochastic dynamic environments. This problem is

often studied under the names of reinforcement learn-

ing (RL), optimal control and sequential decision

making.

In some situations, the agent can observe the state xt ∈ X
of the environment and time t. Often, however, the agent

will only have access to noisy observations yt ∈ Y of the

environment.

The agent aims to maximize a reward function r(·) :

X × A �→ R by choosing a policy π ∈ Π. A policy is

a set of deterministic or stochastic decision rules π =

(d1,d2,d3, . . .). Each rule dt maps the state of the system

xt to an allowable action at ∈ A(xt), with A =
⋃

x A(x).
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The reward function is also known as the utility function.

Equivalently, in the language of control and statistics, the

agent might want to minimize a cost function or loss.

The key principle of utility is that if an agent prefers situation

A to situation B, then it should be the case that r(A) >

r(B).

Let and agent with access to evidence yt carry out an action

at. This action causes the stochastic system to transition to

a new state xt+1 with probability p(xt+1|at,yt).

Since we don’t know what the new state might be, we mar-

ginalize over it in order to compute the expected utility

of action at given the evidence yt:

EU(at|yt) =

∫
r(xt+1, at) p(xt+1|at,yt) dxt+1

This expression assumes that the state is continuous. In

CPSC-532c: Advanced Machine Learning 6

discrete systems, we have:

EU(at|yt) =
∑
xt+1

r(xt+1, at) p(xt+1|at,yt)

Agents can act rationally by maximizing this quantity.

Even in a game theoretic setting, each agent acts by max-

imizing her expected utility. This is known as best re-

sponse.

� EXAMPLE: CANCER TREATMENT

A patient can be in two possible states. He might be ′healthy′

or have ′cancer′. From population studies, we have esti-

mates of the prevalence of the disease. In particular, we

know:

p(x = healthy) = 0.9

p(x = cancer) = 0.1
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Let us assume that we also know the following reward matrix:

a = no treatment a = treatment

x = healthy 0 -30

x = cancer -100 -20

We have to decide whether to treat the patient or not.

We can apply the principle of maximum expected utility

to evaluate the value of the actions a = treatment and

a = no treatment. That is, we compute:

EU(a) =
∑

x∈{healthy,cancer}
r(x, a) p(x)

�

EU(a = treatment) =

EU(a = no treatment) =
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� EXAMPLE: VALUE OF INFORMATION

Suppose a girl (Apple) can choose among N prospective

boyfriends uniformly at random. Only one of the boys will

result in L units of love and the others in 0 units of love. The

cost of adjusting to a new boyfriend is L/N units of love.

�

The expected return with N candidates is:

The reward is the expected return minus the adjustment

cost:

A friend offers to tell her whether Steve is the right one, but

asks for 2L/N units of love in return. Should she accept this

offer? Is knowing whether Steve is the right one worth this

much?
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To answer these questions, we compute the expected reward

of the action ”check out Steve”. The future state can be

either Steve is the right one or not. That is we need to

compute:

EU(checkout) =
∑

xt+1∈{right,wrong}
r(xt+1) p(xt+1|checkout)

� Case 1: at = checkout xt+1 = right

Steve is the right one with probability:

The cost of adjusting to Steve is:

If Steve is the right one, Apple’s reward is:
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� Case 2: at = checkout xt+1 = wrong

Steve is the wrong one with probability:

If Steve is the wrong one, the probability of finding the

right boyfriend becomes:

Even if Steve turns out to be the wrong one, the reward

(expected return minus future adjustment cost) for the

next stage of the game becomes:
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To assess the value of the information in units of Love

on Steve, we compute the expected utility:

�

The uncertainty in the new state (and possibly in the new

action), results in a distribution over rewards. This distribu-

tion can be used to assess the value of information. Consider

the following scenarios from the AI book of Stuart Russell:

CPSC-532c: Advanced Machine Learning 12

�

”Information has value to the extent that it is likely to

cause a change of plan and to the extent that the new

plan will be significantly better than the old plan”.S.R.
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� OPEN AND CLOSED LOOP CONTROL

If Apple’s friend had offered her information on Albert as well

as on Steve for L/N units each, should she have accepted

the offer?

Apple could make a single shot decision. Alternatively, she

could first try Steve, observe the new state of the dating

game and then decide whether to try Albert. This is the

sequential approach.

In control theory, the one-shot approach is known as open

loop control whereas the sequential approach is known as

feedback or closed loop control.

Typically, we need to choose a sequence of decisions while in-

teracting with the environment. In mathematical terms, we

must solve the following joint optimization and integration
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problem:

max
π

E [r(x0, a0,x1, a1, . . .)]

where the expectation is taken with respect to the sequence

of random variables in the system.

Note that the policy could be a sequence of actions (pure

strategy) or a sequence of distributions over actions (mixed

strategy).

The cost of evaluating the reward function is exponential.

Typically, one decomposes this function to make the problem

tractable:

r(x0, a0,x1, a1, . . .) = f [r0(x0, a0), r1(x1, a1), . . .]

where f is often a simple addition operator.

Designing multi-attribute structured reward functions is an

important research problem.
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� MODEL-FREE AND MODEL-BASED RL

In sequential, model-based RL, the agent chooses action

at ∈ A(xt) in state xt (assuming that the state is per-

fectly observable) and receives a reward rt(xt, at). The en-

vironment may then transition to state xt+1 according to

the dynamic probabilistic model pt(xt+1|xt, at). The tu-

ple (X ,A(xt), pt(·|xt, at), rt(xt, at)) is known as a Markov

decision process (MDP).

If we only have partial observations on the state and an

observation model p(yt|xt), we augment the MDP with this

model to obtain a POMDP.

POMDPs are harder to solve than MDPs, but then again

the world requires the use of POMDPs. Later we will see

that POMDPs over world states are MDPs over posterior

distributions on the world states.
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In model-free RL there is no model describing the probabilis-

tic transitions of the system. We will come back to this type

of learning in a few lectures.

The probabilistic dynamic model can be parameterized. The

parameters can be learned during the reinforcement stage or

during an initial stage of supervised learning.

� DECISION RULES AND POLICIES

During a decision instant (decision epoch), a decision

rule specifies a procedure for choosing actions given the

state of the system or some information about this state.

For now, let us assume that the state is perfectly observable.

Markovian deterministic decision rules are mappings of the

form dt : X �→ A(xt).
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Markovian stochastic (randomized) decision rules are map-

pings of the form dt : X �→ P(A(xt)). That is, they map

states to distributions over actions. In game theory, these

are known as mixed strategies.

Decision rules can be history dependent. Given the history

ht = (x1, a1, . . . ,xt−1, at−1,xt) ∈ Ht, we can have a history

dependent deterministic decision rule dt : Ht �→ A(xt).

A policy is a contingency plan or strategy. It is a sequence

of decision rules π = (d1,d2,d3, . . .). Recall our problem:

max
π

E [r(x0, a0,x1, a1, . . .)]

If π is stochastic and Markovian, the expectation is taken

with respect to p(x0)p(a0|x0)p(x1|x0, a0)p(a1|x1)p(x2|x1, a1) · · · .

If π is deterministic and Markovian, the expectation is taken

with respect to p(x0)p(x1|x0, a0)p(x2|x1, a1) · · · .
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� OPTIMALITY CRITERIA

Before moving on to examples, we need to state the optimal-

ity criteria that will govern most of these examples. Recall

that our original problem is:

max
π

E [r(x0, a0,x1, a1, . . .)]

A more tractable criterion is the following separable expected

reward:

max
π

E

[
N−1∑
t=0

rt(xt, at) + rN(xN)

]

where the last reward depends only on the final state. Note

that in this case the number of decisions is bounded. This is

known as a finite horizon problem.

There exists another convention where the reward at time t

also depends on the new states. That is, we reward transi-



CPSC-532c: Advanced Machine Learning 19

tions:

max
π

E

[
N−1∑
t=0

rt(xt, at,xt+1) + rN(xN)

]

Sometimes, there is no obvious choice of N . If the system

is guaranteed to visit a terminating state in finite time

and produce zero reward thereafter, one could simply use

the following infinite horizon cost:

max
π

E

[ ∞∑
t=0

rt(xt, at)

]

If the system produces ongoing rewards, one can adopt a

discounted objective

max
π

E

[ ∞∑
t=0

γtrt(xt, at)

]

where γ ∈ [0, 1) is a discount factor that weighs present

and future costs. Since the rewards at each decision epoch

are bounded, the discounted cost is also bounded:
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�

Another popular way of dealing with infinite horizon prob-

lems is to adopt an average cost criterion:

max
π

lim
N→∞

E

[
1

N

N−1∑
t=0

rt(xt, at)

]
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Finally, a simple objective is to choose the action that max-

imizes the expected cost at each decision epoch:

max
at

Ep(xt+1|xt,at) [rt(xt, at,xt+1)]

This criterion fails to take into account future costs. It is

no surprise that it is known as greedy or myopic decision

making.


