
CPSC-540 Machine Learning 2005

Homework # 1
Due Thursday Feb 23 in class.

NAME:

Signature:

STD. NUM:

General guidelines for homeworks:

You are encouraged to discuss the problems with others in the class, but all write-ups are
to be done on your own.
Homework grades will be based not only on getting the “correct answer,” but
also on good writing style and clear presentation of your solution. It is your
responsibility to make sure that the graders can easily follow your line of reasoning.
Try every problem. Even if you can’t solve the problem, you will receive partial credit for
explaining why you got stuck on a promising line of attack. More importantly, you will get
valuable feedback that will help you learn the material.
Please acknowledge the people with whom you discussed the problems and what sources you
used to help you solve the problem (e.g. books from the library). This won’t affect your
grade but is important as academic honesty.
When dealing with Matlab exercises, please attach a printout with all your code
and show your results clearly.



1. Weak Law of Large Numbers:

Let X1:n be a sequence of i.i.d. random variables with E(Xi) = µ and var(Xi) = σ2. Let also

Xn =
1
n

n∑

i=1

Xi.

(i) Markov’s inequality: For a random variable X and any positive measurable function
f(X) and positive scalar ε, show that

P (f(X) ≥ ε) ≤ E(f(X))
ε

Hint: express f(X) as f(X) ≥ εIf(X)≥ε and apply the expectation operator.

(ii) Chebyshev’s inequality: Choose an appropriate f(Xn) in (i) to show:

P (|Xn − µ| ≥ ε) ≤ var(Xn)
ε2



(iii): Show that the asymptotic estimator of the mean is unbiased; E(Xn) = µ.

(iv) Using the fact that for independent Xi’s we have var(
∑

Xi) =
∑

var(Xi), show that

var(Xn) =
σ2

n

(v) Show the following weak law of large numbers:

P (|Xn − µ| ≥ ε) −→
n→∞ 0

This statement says that the sample mean Xn converges to the true mean in probability as n
goes to infinity. There is another mode of convergence, called strong convergence or almost
sure convergence, which asserts a bit more. Xn is said to converge almost surely to µ if for
every ε > 0, |Xn − µ| ≥ ε happens only a finite number of times with probability 1. Finally,
to study the speed of convergence, one introduces central limit theorems.



2. Linear Programming for MDPs: For any value function V and Bellman operator T we
know that:

(a) If V ≥ TV , then V ≥ V ?.

(b) If V ≤ TV , then V ≤ V ?.

(c) If V = TV , then V = V ?.

That is, applying T to V takes us to a fixed point V ?. We can use this result to cast the
MDP problem in terms of linear programming:

Primal:
Minimize

∑

j

V (j)

subject to V ≥ TdV , that is subject to the linear system of equations:

V (i) ≥
∑

j

p(j|i, a) [γV (j) + r(i, a, j)]

for all a and i.

(i) Derive an expression for the dual linear programming problem. You might want to consult
a standard book with linear programming such as the optimization book of Nocedal and
Wright. Also google the topic.



.

(i) Solve the Gridworld MDP using the matlab files provided on the website and your im-
plementation of linear programming. Hint: Look at the INRA MDP toolbox in the course’s
matlab website. Compare the accuracy vs computational time of policy iteration, value iter-
ation and your linear programming algorithm (i.e. generate a value for money plot).

3. Q-Learning and Sarsa: Implement the Q-learning and Sarsa algorithms on the Cliffworld
example of Sutton. Confirm the results of Figure 6.14.



4. Contraction Operators: In pages 55 to 57 of the notes, we proved that Td is a contraction
operator for the value function. Prove that T is also a contraction operator. Hint: show first
that

TV (i) ≤ TV (i) + βξ(i)max
j

‖V (j)− V (j)‖ξ

ξ(j)

interchange V and V , and use the equation resulting from this interchange to get the right
absolute value.



5. Convergence of Policy Iteration: Prove Theorem 4 on page 61 of the course notes. Hint:
By design, given a policy dt, policy improvement chooses dt+1 such that Tdt+1V

dt = TV dt .
Also recall that the optimal cost is lowest, V dt ≥ V ?, and the number of valid policies is finite
and less than |A||X |.


