Democratic Echo State for Music Improvisation

Anonymous Author(s)
Affiliation
Address

email

Abstract

We propose an algorithm for music improvisation based on time-series pre-
diction. Our learning algorithm consists of echo state networks trained on
subsets of data and combined via majority vote to obtain a stronger classi-
fier. The classifier is trained first on music drawn from MIDI files. Once the
classifier has been trained, we will use this classifier to predict a probability
distribution over the next note in a musical sequence. We will then draw a
note from this distribution and feed it back into the classifier. Though the
musical improvisations that our model produces is difficult to quantify, we
are able to measure how effective our model is in doing time series predic-
tion. Our Ensemble classifier only offers modest improvements in terms of
classification accuracy over the single Echo State Machine. However, it still
proves effective in music improvisation, learning and harmonizing musical
phrases for use in musical improvisation.

The philosopher Leonard Meyer, in Emotion and Meaning in Music proposed his famous
triple equation expectation = emotion = meaning[7]. Music exists, he claims, as a closed
system - it does not make reference to objects outside of itself, only itself, other pieces of
music. The principle emotional content of music, therefore he argues, is in only unfolding
of musical possibilities in one piece in relation to other music. The listener listens to the
music with some a certain degree of uncertainty, in statistical jargon a prior based on
past musical compositions, stylistic elements, and so forth. The uncertainty of what comes
next, Meyer claims, triggers a sense of apprehension and anxiety, which may be released or
built up depending on the song’s progression. In either case, there is a deviation from the
expected progression which triggers an emotional response - the “meaning” of the musical
composition[7, 11]. Music and emotion are linked, in other words, by manipulation of the
predictive capacity of the human mind.

It seems plausible, therefore, that a system for music improvisation should involve two el-
ements - pattern recognition, to learn the priors implicit in musical style, and randomness
- an element of surprise. A sequence too coherent would bore the listener, a sequence too
random would lack harmony, resulting in frustration. It is crucial that a musical genera-
tor should be able to correctly forecast music by detecting patterns within it, but have a
sufficient amount of randomness to permit surprise and suspense.

1 Previous Work

Statistical models for music improvisation can be seen as a special case of Time Series
prediction. Let us begin a formal treatment of the problem by seeing music as a sequence of
events (x1,xo,...,x,). Each event can be seen as a “musical event”, for the purpose of this
project it will be (note, duration, delay). Let us assume that we are given a black box which
can do the following. Given a sequence of events, (z1,Z2,...,,), it produces a probability
distribution over what the next state should be P(z,+1|%n,...,21). Now we draw a sample

Linear

Regression Normalization
Random Encoding
Input Signal Reservoir Readout Prediction
8) S, °
S | |00 oo 00b oo o o
o, o / lo ovoro oo o o
B T R - S - Omm o
So et et S L oo ° S
Z X RN s oo ° o5
2N ’,,,.AMMA:"" LTI o Ty oo b4 S
AR A Pl AN e |oo&TY.00 oo g 5
I s, N o 60 o o
o o 0.1 0.1
° 0.7 047
Delay
* Duration
i
d
Improvisational Mode
Figure 1: The echo state machine architecture.
from this probability distribution, x,;. We then feed the sequence (x1,xa, ..., Ty, Tni1)

into our model, and repeat the process. The output then can be seen as a sequence of
musical events which forms a melody.

The earliest models for music generation has been the Markov chain[2]. This assumes
that music has a short memory memory, or is Markov in nature. Given a sequence of
states(z1, T2, ..., z,) the probability of the next state, given the previous state depends
only on k states in the past. Stated formally P(z,41|Tn,...,21) = P(Tnt1|Tny- s Tnk)-
Unfortunately, this model suffers the curse of dimensionality as the number of states grow
exponentially with k, preventing the model from being explored beyond a small number of
states.

More sophisticated models have been developed since. Recurrent Neural Networks,[3] includ-
ing networks with Long Short Term Memory which hope to capture long range correlations
and discard the short-term memory assumption . Stochastic Factor Oracles [13] are clever
data structures which memorize musical sequences and are able to generalize the Markov
Chain to large numbers of sequences. The PAQ [10] framework uses an internal model of
data compression and a combination of a large Ensemble of predictors to predict the next
state. Echo State Machines have also been employed to capture repeating motifs in mu-
sic directly from sound data. Democratic Liquid State Machines[12] takes it’s inspiration
from the last two paradigms - echo state machines and ensembles and combines them in a
framework for time series prediction. This will also be the inspiration behind our project.

2 Echo State Ensembles

There is an old Indian parable in which six blind men are gathered around an elephant
and asked to describe what they touch. Each man feels a different part, and though their
observations appear to be absurd in isolation, they are in reality all correct, each is just
partially so. When taken in concert, their observation describes the elephant more fully
than the individual observations. This intuition has been exploited by a general class of
algorithms known as Random Subspace Methods, Bagging and Boosting[5]. Most of these
methods involve a set of weak learners which “probe” a part of the data. These learners,
combined to form an Ensemble, generally outperform the individual learners, and are the
basis of many state of the art algorithms available. Methods such as random forests, and
the PAQ algorithm are examples of methods which use this paradigm.

2.1 Echo State Machines

The problem setup is as follows. We are given a series of musical events (z1,xa,...,Z,).
2 = (a,b) in this case is a tuple containing a discrete values, note € [1,2,...d], and real
valued data b € R At each point of time, we wish to find a probability distribution over

the next state P(Zn41|Tn,...,21). This probability distribution will take the form of a
multinomial distribution over possible notes (a ~ Multinomial(py, ..., pes1)), and a Gaussian
distribution with a fixed standard deviation over the duration and delays b ~ N (u;, o).

An echo state network consists of two parts - a reservoir and a readout. Let n be the number
of neurons in the network, a tunable parameter. A random recurrent neural network (hereby

referred to as the reservoir) is procured by generating a random matrix dense matrix W,
nxn

a liquid where each element W;; is drawn from a standard normal. At each point in time ¢,

the random recurrent neural network is fed a time signal a; . This signal has an encoding,
dx1

Ed, another random sparse matrix which can be chosen arbitrarily. The neural network,
nx

at each point, has a state s;. At each time step, the states of the recurrent network are
updated according to the following rule

St41 =0 <W5t + Eat)

Where
() =10
o(x) = — —
14e 7
The sequence of states, {s1, sa, ...} can be seen as a way of transforming the time series data

with fading memory. To obtain useful information from the is the readout. The readout
takes the form of a matrix of coefficients A for which the output will be x4,1 = As; . The
readout is trained using linear regression from the input data. As a final step, the data is
passed through a softmax function to normalize it into a probability distribution.

It is important to note that the random matrix W needs to be rescaled so that the spectral
radius p(A) is less than 1. To gain an intuition of why this is a good choice, notice that
[[Wse|| < [[W]l2llstl]2 < p(A)]|st]|2. Since the sigmoid function keeps ||s:41]]2 < d, repeated
application of the W matrix for spectral radius too small will dampen signals quickly to 0.
On the other hand, a spectral radius too large will send the neural network saturating at
each timestep, making the behavior chaotic. Therefore setting it to =~ 1 poses the neural
network at the “edge of chaos”.

2.2 Comining Echo State Machines

Now that we have defined the Echo State Machines, we will treat them as a black box
and proceed to combine them to form an Ensemble. Let us label each echo state machine
with an integer e € {1,...,F}. We randomly train each echo state machine on contigu-
ous subsets of the data, hence each machine is hoped to capture a different “viewpoint”
of the data. Given previous events (x1,x9,...,2¢) each echo state machine produces a
random variable over the X(¢) ~ P(e) (¢41|T1, @2, ..., x). Since the a’s contain both cat-
egorical data and real valued data, we treat the two seperately. Let X(¢) = (A(¢) B(¢)
where A is categorical and B is real. For the categorical data, we average over the multi-

nomial distributions. In other words, given A(®) ~ Multinomial(pge), . 7pff)), we obtain

A~ Multinomial(Zle pge), ce Zle pge)). We then take the maximum value of this dis-
tribution, which can be interpreted as the democratic vote. For real-valued data, we simply
take the average of the means.

3 Synthetic Data

We perform a simple experiment to convince ourselves the ensembles do indeed do some-
thing. We train our improvisational tool on a artificially generated data-set of 6000 points
containing sine waves 30sin(%) and 20sin(7%) + 10. (the numbers are chosen so that they
match the musical data in terms of scale). Note that the echo state network only sees sym-

bolic sequences, and does not take into account the spatial ordering of notes. This forces

Original Signal

i B S 4 S T W Y 4 Y £ Y & Y 8
]”T H H H H H H H H j AR A AN AR AR
SRR RS REREE a s's se E aee aEeee a
B A O . O L S A W 4 |\ S O B U S O |
B S ¥ E ¥ A S 1 S S S — T,
Ty
) F \w

Figure 2: The original (artificial) signal which consists of two parts. a) is the improvisation
from the Isolated Echo State Machine. b) is an improvisation Echo State Ensemble with
two echo state machines trained separately on 77 and T combined. The Isolated Echo State
Machine fails to capture the long, low frequency sine waves, instead favoring the small high
frequency sign waves, possibly due to it being easier to predict.

the echo state machine to memorize a huge repertoire of “phrases” in order to qualitatively
reflect the input. We train our echo state machine on two networks.

Isolated Echo State Machine First, we train a single echo state machine with n = 100
neurons on the entire dataset.

Echo State Ensemble Next, we split time series is split into two components, T; and
T, at the transition between the two sine waves and combine their readouts using the
democratic procedure described above. We use n = 50 neurons each.

There is a striking difference between the two models is clear in this illustration. While the
single echo state machine gets “stuck” and is unable to memorize both parts of the data,
the ensemble is capable of capturing both signals and synthesizing them. It is interesting
to note that the isolated echo state machine only captures the smaller, higher frequency
component of the data - it is hypothesized that since the patterns in the high frequency
part of the signal occur more frequently, it has valiance over the slower, lower memory low
frequency component and hence dominates the slower low frequency parts of the wave.

4 Music Improvisation

We will now detail the exact experimental procedure employed for musical improvisation.
Out data set consists of 48 pieces of piano pieces by Chopin downloaded from the Classical
Piano Midi Page. We chose piano pieces largely for it’s simplicity as it only contains one
channel and does not require the harmonization of multiple instruments, a more complex
task.

4.1 Data Preprocessing

4.1.1 Data Clustering

We first preprocess our musical data by clustering it into musical parts. To do so, we take
the raw MIDI data and perform spectral clustering on the data by building a similarity
matrix S based on distances in time and pitch of the notes. In this case, the distance
is simply the euclidean distance of the distance in a(p — p)? + b(t — t')? where a = 1 and

b = 10. This data can be interpreted as a graph, who’s edges are the nodes and edge weights
are the distances between nodes. Spectral clustering can be seen as an approximation of
finding the k best cuts in the graph. By setting b > a, the cuts favour vertical rather
than horizontal cuts, seperating the music into contingous components. We find spectral
clustering surprisingly effective in clustering music into parts with independent textures.
We run spectral clustering to separate the music into v different substrings. Abusing some
language from music theory, we will call the segments “movements”.

4.1.2 Data Representation

Raw MIDI data gives us data in terms of a 3-tuple, (note, start time, end time). We need to
convert this data into a form which is conducive for our echo state machine. We hence take
time differences to represent each note as a 3 element tuple, (note, duration, delay). Note
is represented as a 1-of-k representation, where k is the total number of notes in the piece
[0,0,...,0,k,0,...,0]. Duration is the duration of the note, which is end time-start time
and the delay is the amount of delay before the next note starts playing. Note that delay
helps the echo state machine learn chords automatically, as three notes played together will
be represented a sequence with delay 0.

4.2 Data Analysis

The Data is then analyzed using the Liquid State Ensembles described in the preceding
section. Given a sequence of 48 x v movements. We randomly select % of the movements to

be used as training, and % of the movements to be used as testing. There are 85323 Notes
in total, in 48 x ¢ different movements. Note that the exact split of training/test depends
on the number of movements, and is different for each run. We train a classifier for each
movement in the training set, and test it on the classifiers in the test set, resetting the state
s of the echo state machine to 0 each time.

4.3 Results

As a measure of predictive accuracy, we use the average percent of misclassified notes or

1 ZN (train)
train
100 x N 2 I[(Z‘z = xi)

We also train a base n-gram predictor, which simply concatenates all the movements into a
single, long piece, and does predictions based on counting the frequency of n-element tuples.
The results are as follows

Baseg PREDICTOR UNIFORM 1 2 3

0.9091% 2.9110% 4.1001% 4.2889%

Now we run our model

NEURONS
100 200 400 1000
48x2 3.0710% 5.8286% 5.7487% 5.3943%
48x3 4.4093% 5.4487% 5.0901% 5.5610%

48x4 3.7093% 4.1559% 4.5767% 5.1559%

Note that the predictive accuracy depends very heavily on the number of neurons used in
the echo state machine. We get a modest improvement in accuracy by increasing the number
of ensembles, and the improvements are more dramatic when there are less neurons. We

O < I A
...-.' . 5.‘ '\ o . F

e . . o’ . $fee%e s te
e LW I R LR Y T *
LT AW Ty LR D I L

Figure 3: Sample music composition from echo state machine. Observe how it has cap-
tured increasing and decreasing progressions and chord repetitions. The music is slightly
discordant but still pleasant.

hypothesize that smaller echo state networks reach it’s model capacity with more complex
sequences, and hence has more to gain from the ensemble itself. To our dissapointment, the
accuracy sometimes goes down when the ensemble size becomes too large. We guess that
the averaging effects may drown out the signals from the noise, bring the model closer to
the mean.

5 Conclusions

To our disappointment, a large, democratic collection of Echo State Machines trained on
the same dataset, contrary to our expectations, only offers modest improvements in time
series prediction. Fortunately, the musical improvisations (Figure 3) produced by the model
are still quite pleasant and are recognizably musical and harmonious. Several suggestions
come to mind on how to improve the Ensemble. One could use logistic regression to shift
the weight onto predictors which have better predictive power. Or perhaps a Kalman Filter
could be implemented on top of logistic regression to change the weights with time, perhaps
allowing our improvisational tool to change musical textures slowly and consistently. Due
to the constraints of time, however, we leave such investigations to the future.

References

[1] N. Bertschinger and T. Natschliger. Real-time computation at the edge of chaos in
recurrent neural networks. Neural Computation, 16(7):1413-1436, 2004.

[2] J.E. Cohen. Information theory and music. Behavioral Science, 7(2):137-163, 1962.

[3] J.A. Franklin. Recurrent neural networks for music computation. INFORMS Journal
on Computing, 18(3):321, 2006.

[4] B. Grychtol. Using echo state networks for modeling musical improvisation, 2006.

[5] T.K. Ho. The random subspace method for constructing decision forests. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 20(8):832-844, 1998.

[6] http://www.piano midi.de/chopin.htm. Classical piano music page.

[7] D.B. Huron. Sweet anticipation: Music and the psychology of expectation. The MIT
Press, 2006.

[8] H. Jaeger. Echo state network. Scholarpedia, 2(9):2330, 2007.

[9] H. Jaeger and D. Eck. Can’t get you out of my head: A connectionist model of cyclic
rehearsal. Modeling Communication with Robots and Virtual Humans, pages 310-335,
2008.

[10] B. Knoll and N. de Freitas. A machine learning perspective on predictive coding with
paq. Arxiv preprint arXiv:1108.3298, 2011.

[11] L.B. Meyer. Emotion and meaning in music. University of Chicago Press, 1961.

[12] L. Pape, J. de Gruijl, and M. Wiering. Democratic liquid state machines for mu-
sic recognition. Speech, Audio, Image and Biomedical Signal Processing using Neural
Networks, pages 191-215, 2008.

[13] C. Rueda, G. Assayag, and S. Dubnov. A concurrent constraints factor oracle model
for music improvisation. In XXXII Conferencia Latinoamericana de Informtica CLEI,
2006.

