

Breaking a Visual CAPTCHA

Anonymous Author(s) 1

Affiliation 2
Address 3

email 4
 5

Abstract 6

Visual CAPTCHAs have recently become a practical mainstream online 7
Turing test method to counter malicious or unauthorized access by 8
automated scripts. However, naïve implementations of this system can 9
create vulnerabilities that can be easily exploited with minimal 10
computational cost. In this paper, I will demonstrate a simple attack against 11
a popular open source web blog plugin, PHP CAPTCHA. 12

 13

1 Introduct ion 14

Web sites offering services to a large public userbase are prime targets for spammers who 15
advertise products and scams in an effort to entrap users. To increase posting efficiency, 16
rather than manually post the content by hand, many spammers employ automated computer 17
scripts to crawl through the web and post content on multiple sites en masse. Consequently, 18
many site administrators have chosen to employ a Turing test approach to differentiate 19
between legitimate users and bots [1]. 20

The most popular form of the CAPTCHA, a Completely Automated Public Turing test to tell 21
Computer and Humans Apart, is a visual image containing warped text characters with 22
cluttering, distortion, and noise. The premise for this approach assumes that humans are 23
more capable in decoding the text than the automated scripts. 24

 25

Figure 1: Google CAPTCHA example 26

 27

Modern CAPTCHAs, such those used for Google, are implemented specifically to thwart 28
straightforward optical character recognition (OCR) techniques employed by typical 29
document scanning software. Indeed, these systems are so designed in attempts to dissuade 30
even legitimate software developers from bypassing their systems. However, there are no 31
strict guidelines for designing CAPTCHA systems, which leads to several vulnerable 32
implementations. In this paper, I will investigate one such implementation, PHP Captcha 33
[2], and show how a straightforward combination of techniques from computer vision, 34
graphics, and machine learning can be used to attack such a system. 35

 36

2 Related Work 37

 38

A recent security research paper [3] surveyed a variety of modern private CAPTCHA 39
implementations and presented an anti-CAPTCHA implementation that effectively defeated 40
most simple CAPTCHA ranging from eBay, Digg, and CNN. The paper outlined the 41
weaknesses and common vulnerabilities of these systems and provided suggestions for 42
improvement. My paper will attempt to verify some of the techniques described in this 43
paper against a modern open-source CAPTCHA implementation. My implementation will 44
also differ by using a computer graphics approach to segmentation, and a low-cost feature 45
learning technique with K-means [9] for use in classification. 46
 47

2 PHP Captcha 48

The CAPTCHA implementation I will attack in this paper is a popular open-source web page 49

add-on running on PHP [2]. This software appears frequently as a plugin in web blogs to 50

protect comment sections of pages from automated spammers. Prior to the rise in popularity 51

in ReCaptcha [4], this CAPTCHA has seen much popularity in WordPress blogs. 52

 53

The feature set of PHP Captcha allows site administrators to customize the distortion and 54

clutter intensity of the CAPTCHA, the background, font, the color of the text and line, as 55

well as the thickness and number of the lines. The software also provides an audio 56

CAPTCHA, which has its own share of exploits [5], but this paper will focus on attacking 57

the visual CAPTCHA. 58
 59

3 Preprocessing 60

Images have to be preprocessed to remove unwanted clutter from the characters prior to 61

segmentation. This clutter can interfere with processes further down in the pipeline, as they 62

introduce extraneous artifacts that can then be mistaken as part of the character body. This 63

section describes a few PHPCaptcha setups that require additional work. 64

 65

4 . 1 Fore ground/ B ack ground S e gme ntat i on 66

 67

Figure 2: Input image (left) and two K-means color segments (right) 68

 69

Many websites tend to customize the CAPTCHA with a background image of their own. 70
Some may even have a variety to improve the aesthetics surrounding such a mundane setup. 71
However, most backgrounds tend to be fixed and reused. This allows modeling the 72
background for background subtraction. Simple backgrounds with pixel colors significantly 73
different from the text in the foreground also can be segmented via K-means color 74
segmentation with merely two or three clusters. Figure 2 shows segmentation the result 75
with 2-means clustering. 76
 77

4 . 2 Noi se Re moval 78

 79

Figure 3: Input image (left) and denoised output (right) 80
 81

Another scheme to avoid segmentation is via the addition of random salt and pepper noise 82
with the same color as the text. This is vulnerable to an iterative removal of pixels that 83
contribute poorly to the average energy within its surrounding patch until there are no 84
further changes. This is essentially a crude execution of the Gibbs algorithm [6]. Removal 85
of larger segments that have been collected can be done with an edge-preserving median 86
filter. Note that very thin lines on the image would also be removed during this denoising. 87

 88
4 . 2 L i ne Re moval 89

 90

Figure 4: Image vulnerable to line removal by color segmentation 91

 92

Lines with thickness close to width of the character body are difficult to distinguish from the 93
characters themselves. However, PHPCaptcha allows for the user to modify the color 94

templates of the lines and text, which leads to a vulnerable case where the text, background, 95

and line can be fully separated through once again by K-means clustering by color. 96

 97

Figure 5: Vulnerable PNG input, line removal, and repair with inpainting 98

 99

As of version 3.0 of the software, PHPCaptcha is also found to have an unpatched 100
vulnerability due to the palette coding of PNG images generated by PHP graphics library. 101
For vanilla CAPTCHA images presented in PNG format without a custom background, 102
regardless of the amount of clutter by lines or noise or signature text, it is possible to 103
completely separate the text and clutter by merely comparing the palette IDs in the image 104
encoding. As in Figure 5, the lines can be removed entirely due to the palette ID over the 105
pixels on the line (and over the text) being different from the palette ID of the text. A simple 106
XOR operator over the values generates the center image. 107

Removing the lines creates gaps within the image that may impair segmentation and 108
recognition pieces later in the pipeline. Consequently, it is necessary to fill in the missing 109
pixels through inpainting [8]. 110

 111

4 Character Segmentat ion 112

Tightly spaced text create difficulties in segmentation due to difficulty distinguishing which 113
given pixels belong to a character, especially if the characters are actually touching. In 114
particular, it is difficult to segment by horizontal spacing alone. Here I introduce an 115
alternative to segmentation inspired from computer graphics: seam-carving [7]. 116

A seam is a path of connected pixels traveling from the top to the bottom of the image. 117
Pixels must neighbor in location by exactly one pixel smoothly without ever becoming 118
horizontal or a sharp changing in direction. These requirements ensure seams travel from 119
the top of the image to the bottom as steeply and quickly as possible while spatially close. 120

Seams are produced differently from the seam-carving paper in that a penalty function is 121
used in place of an energy function: Seams that pass through a pixel of any character (a 122
black-colored pixel) accumulate penalty costs while passing through the background (a pixel 123
of any other color) does not. Consequently, the seam will prefer to go around a character 124
rather than through it when possible. 125

 126

Figure 6: Clockwise from top left: input image, seam costs, seam carve, and binning 127

 128

This property can be used for segmentation. A seam passing in between characters can act as 129
the segmentation boundary that separates two clusters: the left side and the right side. Given 130
that the background subtraction has already labeled that all characters have a black color, the 131
set intersection of these black pixels and the pixels split by the boundaries produce the 132
desired clustering. 133

The seam boundaries can then be taken as bins. Empty bins can be pruned to return only 134
those that contain characters. Notice that with sufficiently small bins this approach can for 135
used for CAPTCHAs that vary the number of characters. This approach also allows forced 136
segmenting between touching characters, which still have a smaller accumulated penalty 137
compared to seams crossing a full character body. 138

 139

3 Crop and Resi ze 140

Pixels clustered via binning are then cropped and rescaled to a suitable template image of 141
40x60 pixels each. These letters are then grouped together for the training set. Since 142
CAPTCHA by design fails if even one character is misidentified, this problem can be 143
interpreted as standard OCR problem for individual characters after removal of clutter. 144

 145

Figure 7: Typical characters samples extracted for a single letter. 146

 147

PHPCaptcha by default installation settings do not distinguish between capital or lowercase 148
variations of the letters. Therefore, we can train these together as a single unit, and thus 149
reducing the loading of training, and the need to gather a sufficiently large training 150
collection for each individual letter. This also allows combing similar characters like S, s, B, 151
B, and W, w without additional costs in storage. 152

 153

4 Feature Learning and Classifier Training 154

Applying techniques from Coate’s [9], it is possible to generate basis or filters that represent 155
parts of the collected image patches over the training set. The features on the left have PCA 156
whitening applied rather than ZCA due to implementation restrictions of the library during 157
the time of coding. However, we can observe quantitatively the Gabor-like resemblance of 158
the features compared to the specific patches on the right image. 159

 160

Figure 7: Dictionary features learned with K-means on the CAPTCHA 161
training set with whitening PCA (left) and without (right). 162

 163

 164

5 Result s 165

Using the code for PHP Captcha, 500 training samples and 200 test samples were generated. 166
For this paper, the samples were generated with straightforward background subtraction, 167
noise reduction, and line removal. Preprocessing and segmentation is applied for each 168
sample. 169

Unfortunately, the implementation of the system through Python and the Scikit-learn library 170
has not been fully successful due to the work-in-progress nature of the Coate’s recent paper. 171
As a result, only the bases can be computed via K-means but without feeding it into a 172
convolution neural network or a simple linear SVM for training and classification. 173
However, performance as indicates in Coates’ paper suggest relatively high performance for 174
classification to the extent of higher-end RBMs. We can expect similar performance here. 175

 176

6 Limitat ions and Further Work 177

Line removal becomes particularly problematic when the colors cannot be segmented, and 178
the image format is not vulnerable, and the lines are as thick as the characters. In this case, 179
we can attempt to estimate the location of some of the lines by applying a Progressive 180
Probabilistic Hough Transform [10] to the image gradient. In the particular OpenCV 181
implementation, this returns endpoints of line segments each supported by the hypothesis 182
that points in between contribute to that straight line or curve. However, wavy lines cutting 183
across many characters horizontally prove difficult to remove without damaging the 184
characters, and many line segments can remain undetected due to the characters themselves 185
contributing as “noise” in Hough space. 186

In this scenario, the current approach would rely heavily on the seam carving segmentation 187
to make the least costly cut around or through these lines. However, it may be possible to 188
combine information from Hough estimations by reducing the cost of cutting through pixels 189
on or close to a suspected line segment. 190

Re fe re nce s 191

[1] M. Naor. Verification of a human in the loop or Identification via the Turing test. Available 192
electronically: http://www.wisdom.weizmann.ac.il/~naor/PAPERS/human.ps, 1997. 193

[2] D. Phillips. SecurImage PHP Captcha 3.0. http://www.phpcaptcha.org, 2011. 194

[3] E. Bursztein, M. Martin, and J. Mitchell. Text-based CAPTCHA strengths and weaknesses. In 195
Proceedings of the 18th ACM conference on Computer and communications security (CCS '11). ACM, 196
New York, NY, USA, 125-138, 2011. 197

[4] Google Inc. reCAPTCHA. http://www.google.com/recaptcha 198

[5] A. Anonymous. Web App Security blog. http://www.idontplaydarts.com/2011/05/exploit-199
phpcaptcha-securimage/, 2011. 200

[6] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of 201
images*. Journal of Applied Statistics, 20(5):25–62, 1993. 202

[7] S. Avidan and A. Shamir, "Seam carving for content-aware image resizing," ACM Trans. Graph., 203
vol. 26, no. 3, 2007. 204

[8] A. Telea, “An image inpainting technique based on the fast marching method,” In Proceedings 205
of Journal of Graphics Tools, vol.9, no.1, pp.25–36, 2004. 206

[9] An Analysis of Single-Layer Networks in Unsupervised Feature Learning Adam Coates, 207
Honglak Lee and Andrew Ng. In NIPS*2010 Workshop on Deep Learning and Unsupervised 208
Feature Learning. 209

[10] J. Matas, C. Galambos, and J. Kittler, "Robust Detection of Lines Using the Progressive 210
Probabilistic Hough Transform", presented at Computer Vision and Image Understanding, pp.119-211
137, 2000. 212

http://www.google.com/recaptcha
http://www.idontplaydarts.com/2011/05/exploit-phpcaptcha-securimage/
http://www.idontplaydarts.com/2011/05/exploit-phpcaptcha-securimage/

