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Abstract 6 

Visual CAPTCHAs have recently become a practical mainstream online 7 
Turing test method to counter malicious or unauthorized access by 8 
automated scripts.  However, naïve implementations of this system can 9 
create vulnerabilities that can be easily exploited with minimal 10 
computational cost.  In this paper, I will demonstrate a simple attack against 11 
a popular open source web blog plugin, PHP CAPTCHA. 12 

 13 

1 Introduct ion  14 

Web sites offering services to a large public userbase are prime targets for spammers who 15 
advertise products and scams in an effort to entrap users.  To increase posting efficiency, 16 
rather than manually post the content by hand, many spammers employ automated computer 17 
scripts to crawl through the web and post content on multiple sites en masse.  Consequently, 18 
many site administrators have chosen to employ a Turing test approach to differentiate 19 
between legitimate users and bots [1]. 20 

The most popular form of the CAPTCHA, a Completely Automated Public Turing test to tell 21 
Computer and Humans Apart, is a visual image containing warped text characters with 22 
cluttering, distortion, and noise.  The premise for this approach assumes that humans are 23 
more capable in decoding the text than the automated scripts. 24 

 25 

 

Figure 1: Google CAPTCHA example 26 

 27 

Modern CAPTCHAs, such those used for Google, are implemented specifically to thwart 28 
straightforward optical character recognition (OCR) techniques employed by typical 29 
document scanning software.  Indeed, these systems are so designed in attempts to dissuade 30 
even legitimate software developers from bypassing their systems.  However, there are no 31 
strict guidelines for designing CAPTCHA systems, which leads to several vulnerable 32 
implementations.  In this paper, I will investigate one such implementation, PHP Captcha 33 
[2], and show how a straightforward combination of techniques from computer vision, 34 
graphics, and machine learning can be used to attack such a system. 35 

 36 

2 Related Work  37 



 38 

A recent security research paper [3] surveyed a variety of modern private CAPTCHA 39 
implementations and presented an anti-CAPTCHA implementation that effectively defeated 40 
most simple CAPTCHA ranging from eBay, Digg, and CNN.  The paper outlined the 41 
weaknesses and common vulnerabilities of these systems and provided suggestions for 42 
improvement.  My paper will attempt to verify some of the techniques described in this 43 
paper against a modern open-source CAPTCHA implementation.  My implementation will 44 
also differ by using a computer graphics approach to segmentation, and a low-cost feature 45 
learning technique with K-means [9] for use in classification. 46 
 47 

2 PHP Captcha  48 

The CAPTCHA implementation I will attack in this paper is a popular open-source web page 49 

add-on running on PHP [2].  This software appears frequently as a plugin in web blogs to 50 

protect comment sections of pages from automated spammers.  Prior to the rise in popularity 51 

in ReCaptcha [4], this CAPTCHA has seen much popularity in WordPress blogs. 52 

 53 

The feature set of PHP Captcha allows site administrators to customize the distortion and 54 

clutter intensity of the CAPTCHA, the background, font, the color of the text and line, as 55 

well as the thickness and number of the lines.  The software also provides an audio 56 

CAPTCHA, which has its own share of exploits [5], but this paper will focus on attacking 57 

the visual CAPTCHA. 58 
 59 

3 Preprocessing  60 

Images have to be preprocessed to remove unwanted clutter from the characters prior to 61 

segmentation.  This clutter can interfere with processes further down in the pipeline, as they 62 

introduce extraneous artifacts that can then be mistaken as part of the character body.  This 63 

section describes a few PHPCaptcha setups that require additional work. 64 

 65 

4 . 1 Fore ground/ B ack ground S e gme ntat i on  66 

 67 

             

Figure 2: Input image (left) and two K-means color segments (right) 68 

 69 

Many websites tend to customize the CAPTCHA with a background image of their own.  70 
Some may even have a variety to improve the aesthetics surrounding such a mundane setup.  71 
However, most backgrounds tend to be fixed and reused.  This allows modeling the 72 
background for background subtraction.  Simple backgrounds with pixel colors significantly 73 
different from the text in the foreground also can be segmented via K-means color 74 
segmentation with merely two or three clusters.   Figure 2 shows segmentation the result 75 
with 2-means clustering. 76 
 77 

4 . 2 Noi se  Re moval  78 

 79 

             

Figure 3: Input image (left) and denoised output (right) 80 
 81 



Another scheme to avoid segmentation is via the addition of random salt and pepper noise 82 
with the same color as the text.  This is vulnerable to an iterative removal of pixels that 83 
contribute poorly to the average energy within its surrounding patch until there are no 84 
further changes.  This is essentially a crude execution of the Gibbs algorithm [6].  Removal 85 
of larger segments that have been collected can be done with an edge-preserving median 86 
filter.  Note that very thin lines on the image would also be removed during this denoising. 87 

 88 
4 . 2 L i ne Re moval  89 

 90 

 

Figure 4: Image vulnerable to line removal by color segmentation 91 

 92 

Lines with thickness close to width of the character body are difficult to distinguish from the 93 
characters themselves.  However, PHPCaptcha allows for the user to modify the color 94 

templates of the lines and text, which leads to a vulnerable case where the text, background, 95 

and line can be fully separated through once again by K-means clustering by color. 96 

 97 

         

Figure 5: Vulnerable PNG input, line removal, and repair with inpainting 98 

 99 

As of version 3.0 of the software, PHPCaptcha is also found to have an unpatched 100 
vulnerability due to the palette coding of PNG images generated by PHP graphics library.  101 
For vanilla CAPTCHA images presented in PNG format without a custom background, 102 
regardless of the amount of clutter by lines or noise or signature text, it is possible to 103 
completely separate the text and clutter by merely comparing the palette IDs in the image 104 
encoding.  As in Figure 5, the lines can be removed entirely due to the palette ID over the 105 
pixels on the line (and over the text) being different from the palette ID of the text.  A simple 106 
XOR operator over the values generates the center image. 107 

Removing the lines creates gaps within the image that may impair segmentation and 108 
recognition pieces later in the pipeline.  Consequently, it is necessary to fill in the missing 109 
pixels through inpainting [8]. 110 

 111 

4 Character Segmentat ion 112 

Tightly spaced text create difficulties in segmentation due to difficulty distinguishing which 113 
given pixels belong to a character, especially if the characters are actually touching.  In 114 
particular, it is difficult to segment by horizontal spacing alone.  Here I introduce an 115 
alternative to segmentation inspired from computer graphics: seam-carving [7]. 116 

A seam is a path of connected pixels traveling from the top to the bottom of the image.  117 
Pixels must neighbor in location by exactly one pixel smoothly without ever becoming 118 
horizontal or a sharp changing in direction.  These requirements ensure seams travel from 119 
the top of the image to the bottom as steeply and quickly as possible while spatially close.  120 

Seams are produced differently from the seam-carving paper in that a penalty function is 121 
used in place of an energy function: Seams that pass through a pixel of any character (a 122 
black-colored pixel) accumulate penalty costs while passing through the background (a pixel 123 
of any other color) does not. Consequently, the seam will prefer to go around a character 124 
rather than through it when possible. 125 



 126 

     

     

Figure 6: Clockwise from top left: input image, seam costs, seam carve, and binning 127 

 128 

This property can be used for segmentation. A seam passing in between characters can act as 129 
the segmentation boundary that separates two clusters: the left side and the right side. Given 130 
that the background subtraction has already labeled that all characters have a black color, the 131 
set intersection of these black pixels and the pixels split by the boundaries produce the 132 
desired clustering. 133 

The seam boundaries can then be taken as bins.  Empty bins can be pruned to return only 134 
those that contain characters.  Notice that with sufficiently small bins this approach can for 135 
used for CAPTCHAs that vary the number of characters.  This approach also allows forced 136 
segmenting between touching characters, which still have a smaller accumulated penalty 137 
compared to seams crossing a full character body. 138 

 139 

3 Crop and Resi ze  140 

Pixels clustered via binning are then cropped and rescaled to a suitable template image of 141 
40x60 pixels each.  These letters are then grouped together for the training set.  Since 142 
CAPTCHA by design fails if even one character is misidentified, this problem can be 143 
interpreted as standard OCR problem for individual characters after removal of clutter. 144 

 145 

         

Figure 7: Typical characters samples extracted for a single letter.  146 

 147 

PHPCaptcha by default installation settings do not distinguish between capital or lowercase 148 
variations of the letters.  Therefore, we can train these together as a single unit, and thus 149 
reducing the loading of training, and the need to gather a sufficiently large training 150 
collection for each individual letter.  This also allows combing similar characters like S, s, B, 151 
B, and W, w without additional costs in storage. 152 

 153 

4 Feature Learning and Classifier Training  154 

Applying techniques from Coate’s [9], it is possible to generate basis or filters that represent 155 
parts of the collected image patches over the training set.  The features on the left have PCA 156 
whitening applied rather than ZCA due to implementation restrictions of the library during 157 
the time of coding.  However, we can observe quantitatively the Gabor-like resemblance of 158 
the features compared to the specific patches on the right image. 159 

  160 



  

Figure 7: Dictionary features learned with K-means on the CAPTCHA 161 
training set with whitening PCA (left) and without (right). 162 

 163 

 164 

5 Result s  165 

Using the code for PHP Captcha, 500 training samples and 200 test samples were generated.  166 
For this paper, the samples were generated with straightforward background subtraction, 167 
noise reduction, and line removal.  Preprocessing and segmentation is applied for each 168 
sample. 169 

Unfortunately, the implementation of the system through Python and the Scikit-learn library 170 
has not been fully successful due to the work-in-progress nature of the Coate’s recent paper.  171 
As a result, only the bases can be computed via K-means but without feeding it into a 172 
convolution neural network or a simple linear SVM for training and classification.  173 
However, performance as indicates in Coates’ paper suggest relatively high performance for 174 
classification to the extent of higher-end RBMs. We can expect similar performance here. 175 

 176 

6 Limitat ions and Further Work  177 

Line removal becomes particularly problematic when the colors cannot be segmented, and 178 
the image format is not vulnerable, and the lines are as thick as the characters.  In this case, 179 
we can attempt to estimate the location of some of the lines by applying a Progressive 180 
Probabilistic Hough Transform [10] to the image gradient.  In the particular OpenCV 181 
implementation, this returns endpoints of line segments each supported by the hypothesis 182 
that points in between contribute to that straight line or curve.   However, wavy lines cutting 183 
across many characters horizontally prove difficult to remove without damaging the 184 
characters, and many line segments can remain undetected due to the characters themselves 185 
contributing as “noise” in Hough space. 186 

In this scenario, the current approach would rely heavily on the seam carving segmentation 187 
to make the least costly cut around or through these lines.   However, it may be possible to 188 
combine information from Hough estimations by reducing the cost of cutting through pixels 189 
on or close to a suspected line segment. 190 
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