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Abstract

Our goal in this report is to predict number of days that a patient is going to
stay in hospital in future using the claims that the subject has submitted in past.
We attack the problem using three different techniques, and we compare their
performance on the large scale Heritage Health Prize (HHP) dataset. We here
focus on Linear Regression, Neural Network, and Random Forrest for regression.
We also examine a kmeans based feature extractor [1] on the dataset, and we show
how this feature extractor can improve the performance of simple techniques like
linear regression. Our results on HHP dataset are promissing, and we achieve
comparable results to the current leading teams in the competition.

1 Introduction

Over last decades, with advances in computational resources, machine learning has been deployed
in many research areas. One of these areas is health care systems, where the goal is to use the
computational power to help experts in diagnosis or treatments. Machine learning can even enable
us to extract patterns that are not visible or trivial to human.

Heritage Health Prize (HHP) is a competition which is held by Heritage Provider Network in order
to use machine learning to reduce length of future hospitalization of a patient. The goal in this
competition is to predict the number of days that a patients will spend in a hospital based on their
past medical history. For developing such an algorithm a large dataset of medical information for
about 100,000 patients over two years has been provided, along with number of days that they spent
in hospital for two the successive years. Then the task in competition is to predict the number of
hospitalization days for the third year.

There has been tremendous research on regression problem which makes reviewing all those pro-
posed techniques impossible in this report. For a brief overview if techniques one can check [2],
[3]. Here we review techniques proposed for the HHP by the best two teams of the first milestone
of competition which is available publicly. Brierley et al. [4] won the first milestone by ensem-
bling four different techniques. They use Random Forrest [5], Neural Networks, Linear model, and
Gradient Boosting trees [6]. Their final model is an ensemble all those models. Mestrom [7], the
second winner of the milestone developed 21 different models and formed a final model by linear
combination all those model. Typically their models is a linear model fed to a nonlinear function
such as sigmoid or log. Different models differ based on the features that have been used, the basis
function applied to linear combination, or the subset of data used for training.

Similar experience on Netflix prize shows that the final solution to the problem may not be a single
method, but an ensemble of different techniques. For this purpose in this project we consider a few
simple techniques proposed for regression. We compare the performance of these methods on this
dataset, and we form our final predictor by combining all simple methods. Here we use linear least
square model, Neural Networks, and Bagged Trees. The first three techniques has been shown to
be effective by the winners of the first milestone. In addition to regression, we examined a simple
feature learning technique and we show how a better feature can improve the performance of a
simple technique such a linear regression model.

The organization of paper is as following. In Sec. 2 we define the problem, and the data provided by
the competition. In Sec. 3 we review the models we used for the problem, and in Sec. 4 we examine
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Table 1: Features representing a claim. We extract following fields for a claim, and we represent
each one of these fields with a vector of zeros with a one-entry at the corresponding index.

Fields Length
Specialty 13
Place of Service 9
Primary Condition 45
Procedure Group 18
Charles Index 4
Length of Stay 12
Total 101

them on the data and we show effect different parameters on the performance of our system. Finally,
we discuss the drawbacks of our system, and its possible solutions in Sec. 5

2 Heritage Health Competition

In HHP we are provided with 2.6 million claims submitted by about 113000 members over 3 years
in addition to the number of days they spent on the successive years. For each claim, general
information is stored, including: the specialty of the case (such as surgery, laboratory, internal,
and etc.), primary condition (a broad grouping of diagnostic categories such as infection, cancer,
appendicitis, and etc.), procedure group (such as radiology, pathology, medicine, evaluation and
etc), Charles Index (A measure of affect of disease between 0-4), and the number of hospitalization
days. In addition to the claims, we are also given with number of drugs and lab test has been used
by a patient over a year, as well as the members sex gender and age. Claims are available for 3
years, and the number of days that the member has spent in hospital in the second and third year is
provided. The problem is to predict the number of days that members are going to hospitalize in the
fourth year given the claims they submitted over first three years.

The competitions final evaluation is based on Eq. 1

E =

√√√√ 1

N

N∑
i=1

(log(yi + 1)− log(ti + 1))2, (1)

where yi and ti are the prediction and ground truth for the ith subject, and N is the total number of
subjects.

The evaluation criteria in Eq. 1 can be considered as the squared log ratio of prediction and actual
target value. First insight into the problem reveals that fitting a model to the training target values
by minimizing the least square error between prediction and ground truth will not result in a good
performance on the test data. A better model can be achieved by optimizing the same criteria as in
Eq. 1 on the training data. However, due the log function in the evaluation measure the optimization
in many learning techniques such as linear model will result in a non-convex optimization problem.
However, instead of fitting a model to the actual target values one can fit the model to the logarithm of
target values. This technique has two advantages: First the actual evaluation criterion is minimized
over training which may result in a better model. Second, the fitting problem will not become
non-convex because of the log function.

2.1 Features

In order to be able to compare different regression techniques on HHP dataset, we need to fix the set
of features used for those techniques. In this section we briefly describe the features we extracted
from claims, and in the next section we will describe the methods we implemented.

A patient may have different number of claims over a year. So, the claims should be represented
in a way that it can be easily integrated to a representation for all claims over a year. Fortunately,
most of the fields of claims are discrete, and one of K representation can be used to represent those
field. For example, length of stay for a claim is discretized to 1 day, 2 day, ..., 6 days, [1-2) week,
[2-4) weeks, [4-8) weeks, [8-12) weeks, [12-26) and +26 weeks. So, the length of stay field can be
represented with a binary features of the length 12 with only one non-zero component representing
the case. In Table.1 the features that we used to represent a claim and their length has been shown.

we represent a claim by a feature of the length 101. All claims of a patient are then summed
up together to represent the claims submitted by patient over a year. The age of a patient is also
discritized in bins of 10-year length, and can be represented in the same 1 of K representation using
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K = 10. Similarly we represent the gender of patient using a vector of K = 3 for Male, Female,
and Not Available. We also extract the total number of drugs and lab tests issued for the patient over
a year. We form our final discriptor by concatenating claim features (101), age(10), sex(3), drug
count(1) and lab count(1) which results in a sparse feature of length 116.

3 Methods

In this section we review the models we used to predict the number of days that a patient is going
to spend in hospital. All the techniques has been used for regression problem before. Our goal in
this report is to compare their effectiveness for HHP competition. We mainly focus on different
models for regression, but we also examined a feature learning technique to show how a different
feature could improve the accuracy of a regression model. In following section we start with simple
Linear Model, and we continue with Neural Netwok for regression. Later we continue with a non-
parametric, tree based method for regression problem. Finally, we conclude the section with a simple
but effective feature learning algorithm.

We assume we are given a set of training data in the form {xi, yi} where xi ∈ RD is the feature
vector describing all claims submitted by a patient, yi is the number of days that the patient has spent
on the following year, andD is the length of feature vector. The goal of training algorithm is to learn
a function such as F : X → R that can be used to predict length of hospitalization period for a new
data. Note that as we discussed in Sec. 2 we will replace yi with log(yi) so that minimizing the
Mean Square Error results in minimizing the evaluation criterion in Eq. 1. For simplicity after this
we represent log(yi) using yi, and therefore instead of calculating error expression in Eq. 1 we will
use simple MSE to evaluate different techniques.

3.1 Linear Regression

The simplest approach to train a model for our problem is the linear regression. In this approach we
assume the function Y is in the form of:

y(x,w) = wTx (2)

The minimization of MSE on the training data has analytical solution. If we assume X is the design
matrix where the ith row has the sample xTi then:

w∗ = (XTX)−1XT y (3)

However, in order to control overfitting typically a regularization term E(w) is added to MSE ob-
jective function as well. Here, we use a L2-norm regularizer known as ridge regression which can
be solved by:

w∗ = (XTX + λID)−1XT y (4)
where ID is identity matrix of size D and λ is the regularization parameter that will be chosen by
cross-validation.

3.2 Neural Network

There is an assumption behind linear regression model that may not hold for our problem. In this
model, it is assumed that the target value can be modeled as linear combination of different mea-
surements (features here). One may add some non-linearity to the model by designing nonlinear
basis functions, however, the problem will be designing good basis functions. Nueral Network are
general class of non-linear parametric functions that maps input x to a target value y. The advantage
of neural networks is their flexibility to tune different parameters of a non-linear model. However,
adding this option makes parameter learning a non-convex problem. Therefore instead of a global
optimum, a local optimum is achieved by iterative techniques such a gradient decent.

We use a two-layer network to model the mapping function where there is a hidden layer between
input and output nodes. The hidden layer can be considered as feature functions applied to the data.
The output of hidden layer is passed to a linear model to form the final output of function. Typically
in regression problem, an identity function is used in output node however, the transfer function in
hidden layers can be chosen among a few options. Besides these functions, number of hidden layers
should be also set. In Sec. 4 we will discuss the efficiency of different parameter settings.

Parameter learning in a feed forward Nueral network can be done by many methods in gradient
decent family such as steepest decent and stochastic gradient decent. In this method, parameters
are set randomly in the first iteration, and in each iteration they are updated in direction of negative
gradient of error function:

wt+1 = wt − η∇E(wt) (5)
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where wt is the current parameters of the network, E(wt) is the error function (MSE in our case)
and η is the step size for update.

The gradient in Eq.5 can be calculated by Error Backpropagation technique. In this technique, the
data is fed forward in the network and outputs of neurons are calculated. Then gradient of parameters
are calculated by traversing the network backword. We use MATLAB neural network toolbox for
learning network parameters. This software uses Levenberg–Marquardt [8] algorithm for optimizing
the parameters which can be considered as an extension of gradient decent technique.

3.3 Random Forest

Tree-based techniques are simple but effective non-parametric techniques that have been widely
used for regression and classification. They can be viewed as a combinations of many models that
each makes a decision at a region. In a very simple form a CART, classification and regression
tree [9], is a binary tree whose model is selected by traversing in tree from root to a leaf. In each
node a feature of input is compared with a threshhold and the successive node is chosen based on
the output of comparison. Therefore, each node will correspond to a region in input space which has
a constant value for output variable.

Learning a CART, corresponds to constructing a tree that has the lowest MSE on the training data.
Constructing a tree is consist of choosing splitting variable for each node, and assigning an output
value to the regions at the leaves. Given the regions, it can be shown that the output of the tree for
the region at a leaf can be calculated by:

ŷm = avg(yi|xi ∈ Rm) (6)

where Rm is a region segmented by the mth leaf and ŷm is the output of tree for the region.

Finding the regions that minimized the MSE on training data globally is computationally infeasible.
Therefore, typically a greedy algorithm is used for finding the splitting variable and the threshold for
each node. In this technique, for a node on the tree, all splitting variables are examined and the one
that minimize the MSE for two resulting region is chosen. i.e. threshhold θj can divide the variable
j into two regions R1(j, θj) and R2(j, θj) where:

R1(j, θj) = {x|x(j) ≤ θj}, R2(j, θj) = {x|x(j) > θj} (7)

So, we need to find the splitting variable and the threshold that minimizes:

min
j,θj

[
min
ŷ1

∑
xi∈R1(j,θj)

(yi − ŷ1)2 +min
ŷ1

∑
xi∈R2(j,θj)

(yi − ŷ2)2
]

(8)

ŷ1 and ŷ2 can be found by Eq.6 for a j and θj . The threshold in the outer minimization in Eq.8 can
be done quickly by scanning the all input data.

Learning a tree for large dataset such as HHP data can be done very quickly. However, the output
a CART will suffer from overfitting and noise. Bagging is a technique for reducing the variance of
output of different low biased models which is achieved by averaging their output. Random Forest
is a bagging technique proposed for CART that average the output of many noisy trees in order to
reduce the variance of output. Creating a Random Forest can be done simply in an iterative algorithm
where in each iteration a CART is created from a sample subset of training data and a sample subset
of input features. The final output of the forest will be the average of output of each tree created in
the learning.

3.4 Feature Learning by K–means

In all the methods, discussed above we use a hand designed feature extracted from the claims.
Even though these feature are interpretable by human, but they are not necessarily good predictors.
Many feature learning has been proposed in machine learning community for learning features from
the data i.e. RBM [10] and sparse auto-encoders [11]. In this section we review a simple feature
proposed in [1].

In this technique the raw feature, X is first whitened by projecting the data to its principal com-
ponents and diving each variable in the projection space by its standard deviation. Then, K–mean
clustering technique is run on the data to extract K center of clusters, ck. The final feature is formed
by:

fk(x) = max {0, µ(z)− zk} (9)

where zk = ‖x − ck‖2 and µ(z) is the mean of elements of z. In this case, the feature fk will be
zero where the distance of the x and the center ck is above the average. The main advantage of this
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Table 2: Performance of different techniques on validation dataset, and their corresponding coeffi-
cient in final model.

Method Linear Regression Neural Network Random Forest Kmeans Feature
MSE 0.4524 0.4518 0.4510 0.4496

Coefficient 0.0014 0.1416 0.2918 0.2707

technique is its simplicity. Unlike other techniques that has many parameters to tune, in this method
we only need to set the number of clusters. Next, we will train a linear regression model on top of
this feature and we show how new feature performs with respect to the other models.

4 Experiments

In this section we examine the techniques we reviewed in previous section on HHP data. In HHP
competition the data for first two years is available for training. The third year is separated for test
purpose. Therefore, the groundtruth for the third year is not available. Here, we use first year’s data
for the training, and the second year’s data for validation in order to tune the parameters of different
techniques. Finally, we will form our final classifier by combining all methods, we will submit a
score file to the competitions website to evaluate our system with other team members.

Each year’s data consists of about 70,000 samples. Therefore, training our models with all possible
parameters for some methods especially neural network may take a very long time. For this purpose
we only tune the main parameters of methods, and we limit the domain of parameters to small
number of choices.

In Fig. 1 we visualized performance all techniques with using different parameters. On all these
figures the y axis is the Mean Square Error(MSE) between output of a model and the groundtruth.
Since we fit our models to the logarithm of ground truth, this measure is equal to the performance
measure used in the competition.

Linear Regression: This model has only one parameter to tune which is the regularizer trade off
coefficient, λ. We changed λ from 10−4 to 102, and the best result was achieved at λ = 10−2.

Neural Network: This model has many parameters to tune, such as transfer function in hidden
node, number of hidden nodes, step size and batch size in training. Unfortunately,the method is also
very slow on large scale data. Hens, we set all parameter to their default setting in the implementa-
tion except for the transfer function type and number of hidden neurons. We examined two transfer
functions: radial basis function (radial) u(x) = ex

2

, and hyperbolic tangent sigmoid function (tan-
sig) u(x) = 1−e−2x

1+e−2x . We can see in Fig. 1 that the latter function outperforms other choices on the
validation set using four hidden neurons.

Random Forest: For random forest there are a few parameters to tune. We set sampling size
of training data to 10% of whole training data to prevent training from becoming very slow. We
also set feature sample size to 33% of all feature so that we can have a proper set of all good
predictors. In Fig. 1 we visualize the performance this model versus different number of trees
in model. Suprisingly, as we increase the number of trees in the model the error decreases, but
the model never overfits into our problem. This shows the robustness of random forest against
overfitting.

K–means Feature: We only need to set the number of clusters for this model. In Fig. 1 we show
how inceasing the number of clusters improves the performance. Note that we used regularized
linear regression on top of this feature, so we also need to cross validate on different values of this
parameter. Here, we changed λ from 10−4 to 102 but we show the best λ for each K, number of
clusters.

In Table. 2 we compared the best performance of different techniques on the validation set. We
can see neural netwok works slightly better than linear regression model, and random forest model
outperforms both those methods. Finally, we can see a simple linear model trained on k–means
features has the best accuracy.

Now that we have the output of different methods on the validation dataset, we can train a linear
model that combines all these models together and fuse them into one model. We train this model,
and we obtained the coefficients in the seconds row of Table. 2. In order to create our submission for
the competition, we applied all the models to the test data and we combined their output using the
coefficients trained from the validation dataset. Our submission had 0.4641 error on the test dataset,
and was ranked in the top 25% of all 700 participants of the competition while the current leading
entry has 0.4542 error.
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Figure 1: Performance of different methods on validation dataset using different parameters. a)
linear regression model using different λ parameter. b) Neural Netwoks with radial basis function
(radial) or hyperbolic tangent sigmoid function (tansig) and different number of hidden neurons. c)
Different number of trees in Random Forest Model. d) different number of clusters for Kmeans
feature.

5 Conclusions
In this report, we compared performance of different regression methods on the HHP dataset. We
also showed how k–means features outperforms all other models on the validation set. We finally
formed a model by linearly combining all the models we reviewed. We also showed that our ensam-
bled model achieved comparable result in HHP competition leaderboard.
Howevere, due to the limited time, a few unexplored paths remained for future work. In learning
process we did not tune all parameters for all the models. For example, larger sample size for
Random Forest method may produce better model. We also used kmeans feature in a linear model.
We could feed this feature to other models. In feature extraction, we ignored the temporal aspect
of data. A subset of patients have their claims available for two years. A model that considers first
two years for predicting the third year may have better result. But it might be problematic for the
patients with claims only for a year.
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