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Abstract 
Transcription factors (TFs) and their DNA binding motifs, called 
transcription factor binding sites (TFBSs) play important roles in most 
biological processes. However, the list for TFBSs still remains largely 
unknown. Machine learning approaches have been intensively applied to 
predict TFBSs. In this paper, a novel prediction approach has been 
presented based on Markov Chain Monte Carlo (MCMC) method and latest 
discovery of TF-TFBS co-evolution. By defining and solving a problem 
modified from conventional TFBSs prediction problem, the paper provides 
a new way to predict TFBSs for poorly characterized TFs, which has been 
previously considered difficult. The performance of the proposed approach 
has been evaluated on real biological data. 

 

1 Introduction 
TFs are proteins which can regulate gene expression. TFs carry out their function through 
interacting with specific TFBSs [1]. TFBSs are DNA sequences that the TFs bind to. 
Different TFs bind to different TFBSs. And normally, a TF can bind to a set of TFBSs. So 
TFBSs are also called DNA motifs. The interaction of TFs and TFBSs regulates gene 
expression by promoting or repressing the speed and efficiency of gene transcription 
(Figure1a).  

Using high-throughput experimental techniques, biologists have identified thousands of TFs. 
However, the corresponding TFBSs are largely unknown due to the experimental scale 
bottleneck. For example, over 1,200 of human and mouse TFs are annotated in the TFCat 
database [2] and the number is still increasing. However, only less than half of these TFs 
have binding sites mapped and annotated in public databases. Considering the possible 
combinations of DNA sequences, it is impossible for wet lab experiments to identify all the 
TFBSs. Currently, most of the TFBSs are predicted computationally, and only a small 
proportion will be validated by biological experiments.  

This paper presents a novel machine learning approach based on the latest discovery of 
co-evolutionary relationship between TFs and TFBSs [3]. As the key component of this 
framework, the prediction approach uses a MCMC method as its core. This new approach is 
motivated to deal with the problem that predicting TFBSs for unknown or poorly studied TFs, 
which previous studies do not have solutions. 
 
1 .1  Re la ted  work  

Since TFBSs are DNA sequence fragments composed by four types of bases {A, T, G, C}, 
the TFBSs prediction problem has been treated as motif finding problem by machine learning 



scientists and bioinformaticians. In general, the current methods for TFBSs identification are 
designed to solve following motif finding problem: 
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Definition1: Given a set S with N sequences, where each of the sequences is generated from 
the alphabet {A, T, G, C}, find out the subsequences set S’ with N’ sequences, where the 
subsequences have identical length l and share highest similarity with each other. 

From Definition1, we can see that the current methods assume that the DNA sequences 
which contain TFBS motifs have been given. And the goal is to identify those motifs. Some 
representative studies are briefly reviewed here. The TFBS prediction has been modeled as 
motif discovery problem in deterministic constraints methods, and solved by employing 
approximate string matching algorithms [4] However, due the diversity in TFBSs of a TF, 
over-predicting problem has been introduced and a large amount of false positives exist in 
this kind of method. Stochastic local search strategies, especially its representative genetic 
algorithms (GA) have also been applied in TFBSs finding to deal with local optima problems 
[5, 6]. However, GA suffered from its low speed when the problem size grows, and did not 
show significant improvement compared with some other methods such as heuristic based 
Gibbs sampling [7] and Hidden Markov Model [8]. Currently, the state-of-art machine 
learning method in TFBSs discovery is MEME [9] which implements an 
expectation-maximization (EM) algorithm as its core. Given the DNA sequences that are 
known to be bound by a TF, this EM will iteratively find the locations of the potential TFBSs 
fragments.  

A very recent research in bioinformatics has revealed the co-evolutionary relationship 
between TFs and TFBSs [3]. It shows that during the evolution, a TF and its corresponding 
TFBSs are changing accordingly in order to maintain their interaction. For example, if there 
is a change (like, A to C) in the TFBS happened, and the TF does not change, then the TF 
may not be able to bind to that TFBS any more. For some important interactions in cell, such 
change may weaken TF-TFBSs interaction and thus result in abnormalities to the organisms. 
So organisms have developed a mechanism to mutation such interaction. As a result, we 
could observe the evolutions of many TFs and their TFBSs are significantly correlated across 
species. This paper also presents a way to measure the correlation by computing the 
correlation value of the evolutionary matrix (i.e. similarity matrix) of TFs and the matrix of 
TFBSs. This research provides the possibility of predicting TFBSs for poorly studied TF by 
looking at its neighbor TFs in the evolutionary tree. 

 
1 .2   Contr ibut ion  

According to Definition1, previous methods can not deal with poorly studied TF since we do 
not have any prior TFBSs information. While based on the notion of co-evolution, the novel 
approach proposed here considers a modified problem according to Definition1 and then it 
could make prediction for poorly studied TFs.  

Definition2: Given the initial set S with N sequences where the sequences have identical 
length l and generated from the alphabet {A, T, G, C}, and a target function f(S), find out the 
optimal set S’ with N’ sequences, where the sequences maximize f(S). 

The target function here is the correlation between the evolutions of TFs and TFBSs as 
defined in [3]. A MCMC algorithm is used to find the optimal TFBSs set.  

The remainder of this paper is organized as following: it begins with an introduction of the 
proposed MCMC method (section2), then it describes the evaluation approaches for this new 
method and the results (section3), discussion are provided at last (section4).   

 
2 Method 
In this section, I will present how to use MCMC to optimize the TFBS set through 
maximizing the co-evolution between TFs and TFBSs, which is the key part of the proposed 
prediction framework.  

 
2 .1  Representat ion  
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Since one TF could bind to a number of TFBSs, the representation of these TFBSs is usually 
a matrix form. This matrix has l rows and 4 columns. Each row represents one position in the 
TFBS motifs, and each column represents one DNA base {A, T, G, C}. The TFBSs lengths ls 
could be different for different TFs. But normally l equals to 8 or 9. In this paper, l is 
considered as constant for all the TFs. The value of each cell aij in the matrix represents the 
probability that the ith position in the TFBS is the jth DNA base. Such matrix is called 
position weight matrix (PWM). 

 
2 .2  Data  source  

The TF data (name, sequence) could be obtained from Uniprot database, which is the most 
comprehensive protein database currently. The TFBS data (name, sequence, PWM) could be 
obtained from Jaspar database, which is the most widely used free TFBS database. Section 3 
will describe the specific dataset used in this paper for evaluation. 

 
2 .3  Pred ic t ion  approach 

Firstly, as showed in Figure1b, for a poorly studied TF X, its closet k neighbor TFs (with 
known TFBSs) on the evolutionary tree are obtained (i.e. the TFs share the highest sequence 
similarities with X) using common bioinformatics tool ClustalW. According to [3], it is 
assumed that during the evolution, when a TF changes, its TFBSs change accordingly. So the 
TFBSs of X may generated from its neighbors’ TFBSs. 

1. These TFs compose our TF set Y, Y={TF1,TF2,.. TFk}.  116 

2. For all the TFs in Y, their similarity scores (computed by ClustalW) with X are treated as 117 
weights, w={w1, w2,.. wk}.  

Besides, since the TFBSs sets of all TFs in set Y are known, we write this as S={S1,S2,.. Sk}, 
each Si contains identical N DNA sequences.  

 

a.   b.

Figure 1: a.: 3D structures of TF-TFBS interaction complex. DNA is in green and the TF 
protein is in red and yellow. The picture shows a TF protein called MyoD, and is generated 
using Jmol visualization tool. b.: Schematic workflow to predict TFBSs. Suppose X is the 
poorly studied TF protein with unknown TFBSs information, it could be located to the closet 
known TF family Y (a set of TFs share highest similarity in sequences) by simply comparing 
the sequence similarity. The using MCMC, the TFBSs of X could be generated from its 
neighbors’ TFBSs. For illustration, the figure shows the closet two neighbors of X, TF A and 
B.  
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Secondly, the proposed MCMC is applied using similar idea as the Metropolis–Hastings 
algorithm. The binding motifs of target TF X are sampled from its neighbors’ TFBSs sets. 
The sampling process is a Markov process. 
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1. Initialization. Set the value of target function f=0. Randomly pick out one TFBSs set in S, 133 
say Sj. For each of the rest sets Si in S, randomly sample ni sequences out to represent 
this set. ni is proportional to the corresponding weight wi, i.e. ni = wiN. This will form an 
initial TFBSs set with ∑ niെj  sequences.  

2. Generate a PWM matrix M by considering all the ∑ niെj  sequences. To calculate the 137 
matrix, we take a simple average of these sequences.  

3. Then for all the sequences in Sj, use the PWM matrix M to score each of them. The score 139 
is simply a summing up of the base occurrence probability for each position.  

4. The top nj sequences in Sj with highest scores are selected as sj. Then generate a new 
PWM matrix M’ based on M by incorporating sj. Use M’ to compute the co-evolutionary 
value as described in [3].  

5. The co-evolutionary value is then compared with f. If it is greater than f, assign it to f. 144 
And the algorithm proceeds to isolate another TFBS set Sj’ with sequences set sj to 
represent Sj. If the value is not greater than f, keep f. And the algorithm proceeds to 
isolate another TFBS set Sj’ with sequences set randomly sampled to represent Sj.  

6. Update all the other TFBSs set in S respectively. 148 

7. Repeat 2 to 6 until convergence or maximum attempts reached.  149 

The pseudo code of the MCMC algorithm is shown in Figure2 

 
Procedure MCMC{ 

t = 0; 
f=0; 
Initialize Set(t); 
While (Not Converge or t<Maximal_Attempt) 
{ 

For Seti(t) in Set(t) 
{ 
 Update Seti(t) 
 new_value = co_evo(Seti (t)); 
 If (new_value>f ) 
 { 

   new_value = f; 
 Seti(t+1) = Seti(t); 

 } 
  t = t + 1; 
    } 

} 
} 

Figure 2: Pseudo-code of MCMC algorithm 152 
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3 Evaluation 
To evaluate the performance of the proposed algorithm, real biological data is used. Since the 
algorithm is designed for poorly studied TFs with no prior information of its TFBSs, in order 
to evaluate it, TFs with known TFBSs are used without its TFBSs. The predicted TFBSs 
could then be evaluated by the real TFBSs. And this is done by performing 
leave-one-out-cross-validation on TFs of four well-studied TF families. At each time, one of 
the TFs is left out and considered to be the target TF. Its TFBSs are then predicted using the 



above method. 161 
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3 .1  Resu l t s  

The performance are assessed by sensitivity, which measures the ratio of true predictions among 
all true TFBS; specificity, which measures the ratio of true predictions among all predictions; and 
Mathew’s correlation coefficient (MCC) [10], which is a balance of sensitivity and specificity. 
Four TF families used in [3], including Homeo, HMG, TRP and bHLH families are used for 
evaluation. The data source has been described in section 2.2. The results are shown in 
Table1. The evaluation values in each cell are the average value across the whole family, 
with standard deviation in the bracket. 

 

Table 1: Evaluation of TFBSs prediction in four real TF families 

TF families Species TF numbers Sensitivity (std) Specificity (std) MCC (std)

Homeo CAEEL 100 0.66(0.04) 0.50(0.01) 0.52(0.01)
HMG eukaryotes 15 0.37(0.02) 0.37(0.02) 0.35(0.01)
TRP eukaryotes 11 0.25(0.18) 0.13(0.07) 0.16(0.10)

bHLH eukaryotes 36 0.65(0.10) 0.46(0.02) 0.53(0.06)
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In general, the performance is acceptable considering the difficulty for this prediction problem. 
And also here uses a stringent criterion to assess the prediction results: only when the predicted 
TFBS are exactly the same with the real TFBS, it makes a right prediction. Some relaxed criteria 
that commonly used (e.g. allow one or two wrong bases in TFBS) may result in a better look. The 
algorithm performed exceptionally well on the Homeo and bHLH TF set. And these two families 
have more TFs (100 and 36) been tested compared to HMG and TRP families (15 and 11), which 
makes the positive results more significant. 

 
4 Discussion 
Current TFBSs prediction methods are largely based on the conservation information of DNA 
sequences. This new method provides new insights by recruiting co-evolutionary information. It 
could serve as a supplementary approach to existing methods. However, in order to be really 
useful in practice and benefit the whole community in this field, the algorithm need to be further 
optimized. The randomization step, TFBSs set size and the length of the motif are a little bit 
arbitrary set in current version. Also, the performance of the algorithm is not stable and for some 
TF families the performances are poor, which may indicate some latent factors have not been 
taken into account.  

Besides, the current version is written in Perl and it takes on average ~1hr to finish the prediction 
for one TF (including the whole pipeline instead of only the core MCMC though). The testing 
platform is on a typical desktop workstation with a 2.66 GHz Intel core 2 processor Q9400 and 
16GB of RAM, and the system openSUSE 11.1. All programs run on a single thread.  

Moreover, this MCMC method solves a modified problem compared with conventional one. 
A potential issue is that the TFBS sequences predicted by this method may not exist in the 
genome. But as the motif length in this paper is as short as 8 (compared with the genome 
length, 3.4 billion base for human), such issue may not be a problem in practice.  

Current prediction framework is based on the condition that the novel TF X locates within a 
known TF family tree. However, the method proposed here could be applied to any new TF 
as showed in Figure 3. As long as we can get its protein sequence, it can be located on the 
evolutionary tree, and its neighboring TFs could be obtained based on the sequence 
similarity.  

 



Figure 3: The relationship between target TF X and its neighbors in evolution. Any X will 
have neighbors with high sequence similarities. Its binding motifs could then be sampled 
from its neighbors’ TFBSs sets. 
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Since currently there is no available computational approaches to predict TFBSs for poorly 
studied TFs, the evaluation does not involve comparison with other methods. Although this 
new method could be compared with some existing methods with minor adjustment, the key 
for this method is to deal with TFs with no prior information of its TFBSs which has been a 
gap in DNA motif finding field. Since the co-evolutionary relationship between TFs and 
TFBSs has just been discovered recently, this study may serve as an initial attempt and 
stimulate more researches in the future. 
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