
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

Locating Error Sources in Digital Circuit Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

Modern integrated circuits are increasing in size and complexity — the latest Intel
microprocessor exceeds 2.5 billion transistors, whilst NVIDIA’s most advanced
graphics accelerators are now at 3 billion transistors. As a result, more and more
verification effort is required to ensure that these state-of-the-art devices are free
from design errors. Building on previous work which attempts to predict the
source of a malicious rumour in a network (or alternatively, locating the originator
of a virus in an epidemic) using a maximum-likelihood estimator, this paper
investigates applying such techniques to the problem of finding the source of a
realistic design error inside a network-representation of an integrated circuit.

1 Introduction

Since their inception in the late 1950s, integrated circuits have come to infiltrate the lives of those
across all spectrums of human society. As predicted (or perhaps, driven) by Moore’s Law, these
devices have made huge leaps and strides in integration — combining 3 billion transistors into an area
no bigger than a postage stamp, as well as in performance and cost. To put this into perspective, had a
$900 commercial flight from New York to Paris in 1978 evolved at the same rate, such a flight would
now cost about a penny and take less than second [1]. This progress has enabled integrated circuits
to be accessible to much of the world: the United Nations Foundation reports that with over 7 billion
people residing on our fair planet, there are now more than 5 billion mobile phone subscriptions [2],
for which each phone contains at least one, but likely more than one, integrated circuit.

However, “with great power comes great responsibility” — besides the technological marvel of being
able to manufacture such capable yet intricate devices, more and more expense and effort is also
required to ensure that these ICs are designed correctly. A recent example of this going awry is the
design flaw in Intel’s Sandy Bridge motherboard chipset that was only discovered after the product
had shipped — necessitating a costly recall that analysts have estimated to hurt the company in the
region of $700 million dollars [3].

The objective behind debugging is to locate the root cause of any erroneous behaviour. By
considering the digital circuit as a network, this problem can be translated into a fascinatingly similar
problem from another domain: how to infer the source of a malicious rumour in a (social) network,
or alternatively, finding the originator of a virus in a population epidemic. Shah and Zaman first
proposed a solution to this problem at NIPS 2009 [4], which was extended into a journal paper [5].

Using knowledge of the “infected” nodes, and information about the underlying network structure,
the authors of this work constructed an estimator for the rumour source based on the notion of its
rumour centrality. The authors then show that the node which maximizes this estimator corresponds
to the maximum-likelihood estimate for the rumour source in an undirected, regular, tree network.
However, rarely are networks in the real world tree structures, let alone regular ones (i.e. in which
every node has the same number of neighbours) and so the authors finish by extending their rumour
estimator to general networks and validate it through simulation.

1

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

���

���
�

� �

�

�

�	
A
B

�

C

DEF

	����

�������
�����

������� �! 	 �"����� ���#
A $�%

� � ����� ��� 	A�

& & & & &

& ' & ' '

' & & ' '

' ' ' & (

Figure 1: Representing digital circuits as a network, example circuit: half-adder

2 Rumour-source estimator

This section summarizes work from Shah and Zaman presented in [4, 5]. Within, the authors assume
that rumours spread through a population according to the susceptible-infected SI epidemic model,
which is a variant of the common SIR model with the recovered category removed. In the former
model, infected individuals can pass the disease (rumour) onto those in the susceptible category,
but those who are infected are not allowed to recover. Furthermore, the authors assume that infected
individuals can only transmit the rumour to its immediate neighbours in the network, indicated by
the existence of an edge. The probability of transmission is also assumed to be independent and
identically distributed.

First, Shah and Zaman construct a rumour-source estimator for a regular, undirected, tree network
and go on to prove that it corresponds to the maximum-likelihood estimate (given that no prior
knowledge exists). As most networks are not regular trees, the authors extend their estimator to work
with general trees and networks. This generalized estimator is given by:

v̂ ∈ max
v∈GN

P (σ∗

v |v)R(v,GN) (1)

where v̂ represents the rumour-source node estimate, GN the graph of N infected nodes, P (σ∗

v |v)
the likelihood of a legal breadth-first infection path (i.e. the spanning tree of nodes through which
all nodes in GN were infected if node v was the source) and R(v,GN) the rumour centrality, which
captures the number of possible infection paths. For the exact definition of each of these terms, we
refer readers to references [4, 5], but simply-speaking these quantities have the following relationship:

P (σ∗

v |v) ∝
1

f(σ∗
v)

(2) R(v,GN) ∝
1

g(GN)
(3)

where f(σ) is a function of the degree of each node in a legal infection path — used to capture
the intuition that nodes with more neighbours are less likely to infect any one particular neighbour;
g(GN) is a function of all possible sub-trees that exist in GN — which seeks to reflect the infection
path “complexity” and allow “deep” trees to be penalized over broader ones. Importantly though, this
estimate can be computed in linear time making it extremely suitable for application to large problems.

These general graphs eliminate some of the simplifications that could previously be exploited in
a regular tree (for example, that all infection paths were equally likely) explaining why this estimator
is no longer the maximum-likelihood estimate. However, Shah and Zaman discovered that despite
this flaw, their estimator performed very well in both synthetic and real generalized networks.

3 Digital circuits as a network

Digital circuits can be represented as a network, or graph, consisting of nodes that represent primary-
inputs and -outputs through which the circuit exclusively interacts with the external environment,
combinational elements (that are purely a function of their inputs, such as AND/OR/NOT gates)
and sequential elements (which samples its input onto its output once per clock period: flip-flops).
An example circuit, a half-adder, is shown in Figure 1.

The state of a circuit can be considered as being held in its flip-flops (which, for example, may
implement the register bank of a microprocessor); with complete knowledge of all flip-flops, it is
possible for a designer to compute the value of all combinational signals within. Hence, the structure

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

(a) GN at t=673616ns (b) GN at t=681656ns

Figure 2: Error snapshots for oc i2c

of an integrated circuit can be simply represented by considering the connectivity between its
flip-flops, and this results in a graph as illustrated by Figure 2. Each node represents one flip-flop
inside a I2C communication controller (oc i2c) and each edge represents the existence of a logical
connection from one flip-flop to another, possibly through combinational logic. We chose to use
this oc i2c circuit because it was sufficiently small to visualize and to allow the technique to be
validated by hand, though we see no reason why these methods cannot be applied to larger circuits.

Because each wire in a digital circuit can only contain one driver, each edge is unidirectional making
this a directed graph: flip-flop A may drive a signal which passes through multiple combinational
gates to affect the value of flip-flop B, but this does not necessarily mean flip-flop B has a reciprocal
effect on flip-flop A (unless of course, a path through a different set of combinational logic exists).
More concretely, this graph captures the dependency relations between flip-flops, with one key
difference: the graph is not guaranteed to be acyclic — that is, a path may exist between a node
and itself — thereby creating an apparent circular dependency. However, as in the original work [5],
we also make the assumption that errors propagate in a breadth-first fashion which means that cycles
will not exist in any infection path σ∗

v . Consequently, we have modified the rumour-source estimator
to work with directed graphs by reducing the degree contribution of each node to P (σ∗

v |v).

4 Results

In order to evaluate the application of the rumour-source estimator to a digital circuit network, we first
simulated the correct circuit using a set of designer-supplied test vectors to realistically exercise it, and
traced the state of all flip-flops in each clock cycle to create a golden reference. Next, we artificially
broke the circuit to mimic a bug introduced during development. One common mistake that we have
personally suffered at the hands of is not fully correcting a line that had been copy-and-pasted:

parameter [16:0] wr_b = 17’b0_0100_0000_0000_0000;
parameter [16:0] wr_c = 17’b0_1000_0000_0000_0000;

- parameter [16:0] wr_d = 17’b1_0000_0000_0000_0000;
+ parameter [16:0] wr_d = 17’b0_1000_0000_0000_0000;

Here, we have purposefully corrupted the assignment for one state in the state machine: state wr d
is now indistinguishable from state wr c. Following this, the buggy circuit was re-simulated and
the value of each flip-flop recorded as the erroneous trace.

Figures 2a and 2b show how this error propagates through the network from the first moment that
c state[15] from the buggy trace corrupts and starts deviating from the golden reference, until
some time later (this and subsequent figures are best viewed in colour). A red node indicates an
immediate mismatch from its reference value (an infected node) whereas a blue node indicates a node

3

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

(a) Rumour-source estimate visualization

dcnt[0]

sda_chk

al

c_state[16] scl_oen shift c_state[14] c_state[15] c_state[13] cmd_ack

dscl_oen sr[5] sr[6]

(b) σ∗

v for v = sda chk

sda_chk c_state[16] scl_oen

dscl_oen shift

s r[5] dcnt[0] sr[6]

c_state[14] al cmd_ack c_state[13]

c_state[15]

(c) σ∗

v for v = c state[15]

Figure 3: Rumour-source estimation and predicted infection paths (with oracle knowledge)

that had previously deviated, but had now re-synchronized itself with the correct trace. Similar to the
SIR epidemic model, this represents a node that had previously been infected but had since recovered;
we make the modification that such nodes do not acquire any immunity (but can be detected as
having recovered) and are hence susceptible to re-infection (making it closer to an SIS model).

In the first erroneous instance, two bits differ from their correct values: bits 15 and 16 of signal
c state (corresponding to states wr c and wr d). For simplicity, we assume that c state[15]
is the unique source of the error.

4.1 Rumour-source estimation with oracle knowledge of recovered flip-flops

With knowledge of the complete trace of flip-flops over time, it becomes trivial to locate the source
of any error by stepping (forwards or backwards) through a buggy trace in order to find the first
instance at which it deviates from the reference. We assume that such a full trace is not available, and
that the designer only becomes aware that an error has occurred at some time after this first instance.
This is a realistic assumption as it may take some amount of time for the error to propagate to an
observed node in the circuit (for example, a primary output). However, in this first study we also
make the unrealistic assumption that “recovered” nodes (i.e. nodes that were once mismatched with
the reference but are now in agreement) can be identified and treated as infected nodes, as doing
so requires the complete trace that we supposedly don’t have.

Figure 3a visualizes the rumour-source estimation using the error snapshot previously illustrated
in Fig. 2b. Nodes that are now coloured in red correspond to both infected and recovered nodes
(red and blue nodes from the previous figure). Green nodes indicate suspected nodes. The saturation
of each node indicates its estimator value, as normalized to the maximum across all nodes.

Disappointingly, the estimator performs rather poorly at predicting the source of the error.
The results show that the sda chk signal was predicted to be originator, with the predicted
breadth-first infection path as shown in Figure 3b. In contrast, the predicted path for the correct
source is shown in Fig. 3c, which differs from the actual infection path by only one edge
(shown in grey). Upon further investigation, we found that although the rumour centrality values
R(sda chk, GN) < R(c state[15], GN) because of the “deeper” nature of the former, their
likelihoods differ by a much bigger factor P (σ2

v |sda chk)) ≫ P (σ2

v |c state[15])) due to the
significantly smaller node degree of sda chk, leading to a higher probability of transmission as
indicated by Eqn. 2. Interestingly, the true source c state[15] was ranked joint-9th of 103, over

4

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

(a) Rumour-source estimate visualization

shift

s r[5] dcnt[0] sr[6] dscl_oen

sto_condition

al

scl_oen c_state[14]

(b) σ∗

v for v = sto condition

scl_oen

dscl_oen shift

s r[5] dcnt[0] sr[6]

c_state[14] al

c_state[15]

(c) σ∗

v for v = c state[15]

Figure 4: Rumour-source estimation and predicted infection paths (without oracle knowledge)

the 129 nodes present. In the original work, Shah and Zaman measure the performance of their
generalized estimator by counting the number of “hops” their estimate was from the true source.
We have chosen not to use this measure as we felt it to be meaningless for our application.

4.2 Rumour-source estimation without oracle knowledge

A more realistic scenario would be to remove the previous assumption that oracle knowledge exists
to allow “recovered” nodes to be identified. Figure 4 repeats the same experiments as in the previous
subsection, but this time with the recovered nodes (blue) treated as being uninfected. The first of
four nodes which returns the maximum rumour-source estimation is sto condition, and its
infection path predicts that it correctly passes through two recovered nodes, however, these nodes do
not include the true source c state[15]. As before, we see the same relationship where although
the rumour centrality of the true source is higher than for the predicted source, this is outweighed
by their likelihoods. This time around, c state[15] is jointly ranked 24 from 103 estimates.

4.3 Analysis and future directions

A number of reasons exist for why the rumour-source estimator proposed by Shah and Zaman
performs so poorly in this application. First and foremost, the prior work assumes that each infected
node can transmit its rumour to any neighbouring node with equal probability — this is not true in
our application: where it is more a case that “all nodes are equal, but some nodes are more equal than
others” — in other words, some nodes are more susceptible to propagating errors depending on the
combinational logic gates that exist between flip-flops. In some ways this is also true of real social
networks — members of a population trust their connections by differing amounts, whilst some mem-
bers are more gullible than others. Interesting future work would be to infer those probabilities from
the underlying circuit logic, or perhaps through online learning, and to weight the graph appropriately
although this would almost certainly impact the computational complexity of the estimator. Perfor-
mance is also compounded by using a breadth-first search to predict the infection path: in Figure 3c
the predicted path is agonizing close to the true infection path (differing by one edge, indicated in
grey) which isn’t selected only due to this breadth-first policy, in which ties are broken at random.

A second reason for poor results may also be our use of directed, as opposed to undirected, graphs.
At first glance, this may appear to simplify the problem, but the existence of cycles in the directed

5

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

graph means that there are still a huge number of possibly infection paths to be considered (as almost
all nodes in the graph can be reached from any other node). Furthermore, we consider a more realistic
SIS (susceptible-infected-susceptible) epidemic model for our application, which allows nodes to
recover and become re-infected, as opposed to the simpler SI model where nodes keep their disease
forever. Again, this results in further magnifying the search space. Future directions on this front
may be to allow multiple error snapshots to be taken into account, which is not unrealistic given that
designers can often observe their circuit periodically, but not in real-time, to provide partial (but not
oracle) knowledge of recovered nodes. Applying belief propagation techniques may be useful here.

Lastly, the buggy digital circuit that we apply our experiments to is not a “closed” system.
Specifically, it continues to interact (unavoidably so) with the external environment through its
primary-inputs and -outputs, meaning that errors can propagate from outside of the system. This
violates yet another assumption made by the previous work: that there is only one rumour source
in the network. Vigilant readers will have noticed that in Figure 2b, there are a total of 14 infected
and recovered nodes, whilst the predicted infection paths in Fig. 3 contain only 12 nodes — this
is because the two missing nodes are only reachable from (and hence infected by) a primary-input.

Future work would also include applying the rumour-source estimator on more error scenarios,
and to investigate with significantly larger (and hence, more sparse) benchmark circuits in which
errors may propagate more extensively and less ambiguously. Looking even further into the future,
by considering that complete visibility into all flip-flops of a large design is often not feasible,
how would an estimator perform when given incomplete knowledge of even the infected nodes?
Following on from that, an even more interesting (and extremely relevant problem currently plaguing
both academia and industry) is: given you can only observe a subset of flip-flops in the circuit, which
ones should be selected to maximize the likelihood of estimating the correct source?

5 Conclusions

Due to the rapid progress made by semiconductor technology, modern circuits are integrating more
and more functionality into each design, which is becoming harder and harder to verify. Prior work
by Shah and Zaman [4, 5] proposed a solution for the compelling problem of how to locate the
source of a malicious rumour as it spreads through a network of individuals (or equivalently, locating
the originator of a virus in a population epidemic). By first considering the trivial case of estimating
the source in an undirected, regular, tree-structured network, the authors constructed a rumour-source
estimator which they subsequently proved to give the maximum-likelihood solution. Next, the
authors then extended their solution to work with irregular trees and general, undirected networks;
although they found that this no longer gave the maximum-likelihood estimate, their estimator was
still found to produce convincing results when validated against simulations.

In this paper, we have investigated applying Shah and Zaman’s rumour-source estimator onto
a network-based representation of an actual digital circuit, using real extracted data, in order to
automatically locate the source of a bug. We make the assumption that bugs in digital circuits appear
as a corrupted value held by a state element (flip-flop) in the circuit, and that this corrupted bit can
propagate onto other flip-flops. In contrast to previous work, our problem differs in that our network
is a directed graph (with cycles) where each node in the graph does not have an identical probability
of infecting neighbouring nodes, and that there may exist multiple error sources.

Disappointingly, we have found that the original rumour-source estimator does not perform as well
when applied to our problem, which we believe is due to the relaxation of the assumptions mentioned
above. However, we believe that this method does still show promise, and we have proposed several
avenues of future work for adapting the estimator to these new assumptions.

References

[1] Intel. Moore’s Law in perspective (Press Kit). http://download.intel.com/museum/Moores_
Law/Printed_Materials/Moores_Law_Perspective.pdf, March 2005.

[2] UN Foundation. 7 Billion Reasons for mHealth. http://www.unfoundation.org/news-and-
media/press-releases/2011/7-billion-reasons-for-mhealth.html, October 2011.

[3] Tom’s Hardware. The Hidden Cost of Intel’s $700 Million SB Recall. http://www.tomshardware.
com/reviews/cougar-point-recall-sata-6gbps,2896.html, February 2011.

[4] Devavrat Shah and Tauhid Zaman. Rumours in a Network: Who’s the Culprit? In NIPS 2009 Workshop
on Analyzing Networks and Learning with Graphs, December 2009.

[5] Devavrat Shah and Tauhid Zaman. Rumors in a Network: Who’s the Culprit? IEEE Transactions on
Information Theory, 57(8):5163–5181, 2011.

6

