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Abstract

We consider a cognitive network where a cognitive user attempts to access the
channel if not occupied by primary users. The problem is formulated as a multi-
armed bandit (MAB) problem. After reviewing several existing MAB algorithms,
we propose a new MAB algorithm. The simulation results demonstrate the advan-
tage of the proposed scheme compared to other listing algorithms when applied to
a cognitive spectrum access problem.

1 Introduction

Recently, the overwhelming increase of wireless services and devices results in overcrowded wire-
less networks and the lack of spectrum resources. The problem stimulated the generation of a new
paradigm of wireless communication, referred as cognitivecommunications [1]. The basic idea
of this communication technique is to take advantage of unused portions of licensed spectrum re-
sources. In a cognitive network, users are classified into primary users and secondary users. Primary
users always gains the permission to transmit, while secondary users, also known as cognitive users,
first senses the channel and transmits its information if thechannel is not occupied. Extensive at-
tention has been paid to develop efficient schemes for the cognitive users to access the spectrum. In
this paper, we propose to cast the media access problem of cognitive users into the frame of a multi-
armed bandit (MAB) problem. Each channel is considered as a slot machine with certain expected
reward while the cognitive user is considered as a gambler playing on several slot machines.

The MAB has been well investigated in the context of machine learning. The UCB algorithm pro-
posed in [2] is proven to be optimal if the reward distribution is stationary. On the other hand,
with non-stationary reward distributions, Whittle’s index [3] is proven to be asymptotically opti-
mal. However, these algorithms assume infinite time, therefore cause problem when applied into
the spectrum access problem of cognitive users. Moreover, the very nature of a wireless channel
is that it is normally time varying, which also should be treated carefully when applying exiting
MAB algorithms into cognitive communication. In this paper, we introduce and evaluate several
existing MAB algorithms, and also proposed a new algorithmswhich is a combination of existing
schemes. However, the new algorithms take account of both the finite-time and time varying nature
of a wireless channel.

The remainder of the paper is organized as follows: In section 2, we describe the network model and
formulate the spectrum access problem of cognitive communication as a MAB problem. Section 3
introduces several existing MAB algorithms as well as the proposed algorithm. Simulation results
are provided in section 4, followed by the concluding remarks in section 5.
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Figure 1: Channel model.

2 Network Model

Fig. 1 shows the network model of interest in this paper1. Consider a network consisting of totalN
channels,N = {1, . . . , N}. The primary users have the priority to access all the channels, while
a cognitive user tries to use these channels when they are notoccupied by the primary users. The
channels are accessed in a time-slotted fashion. Leti refer to the channel index,j refer to the time
slot index andk denote the cognitive user index. Assume that at each time slot, channeli is free with
probabilitypi and letp = (p1, . . . , pN ). Let bi(j) be a random variable that equals 1 if channeli is
available at time slotj and equals 0 otherwise. For the wireless channel, we assume ablock varying
model, i.e., the value ofp is static for a block ofT time slots. Normally, the cognitive user assumed
to be unaware ofp a priori.

In the network model, the cognitive user seeks to exploit thefree channels by sensing a channel
at the beginning of each time slot. In particular, at time slot j, the cognitive user selects channel
s(j) ∈ N to access. If the sensing result shows that channels(j) is free, i.e.,bs(j)(j) = 0 then
the cognitive user can send one unit of information over thischannel; otherwise the cognitive user
have to wait until the next time slot and choose again a channel to access. The problem is that which
channel the cognitive user should choose to sense at each time slot. Therefore, we can compute the
total number of units of information that the cognitive useris able to send over one block as

W =

T
∑

j=1

bs(j)(j) . (1)

and the problem can be generalized as characterizing strategies that maximize

E{W} = E







T
∑

j=1

bs(j)(j)







. (2)

Intuitively, we can observe that the essence of the problem is a trade-off between exploitation and
exploration. By exploitation, it refers to that the cognitive user performs myopic action by selecting
the channel with th highest probability of being free according to all the observations. On the other
hand, by exploration, it means in order to learn the true value of p2, the cognitive user will try
to choose to different channel to access at different time slots. The above observation allows us
to interpret the problem in a bayesian approach and to further reformulate the problem as a MAB
problem.

1We use a network model and notations similar to [4].
2It is assumed there is a true value ofp in the real world.
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2.1 Problem Formulation

We can use the following typical MAB example to illustrate our problem properly: A gambler is
sequentially choose one ofN machines to play. If he wins, there will be one unit of reward.Theith
machine has winning probabilitypi, which is unknown to the gambler. But he has observations of
the outcomes of past plays. The goal is to maximize the overall reward after a total of T plays.

Denote a medium access strategy of the cognitive user, i.e.,a strategy of how to choose channels, by
Γ. Therefore,Γ is a function of the previousj − 1 observations:

Φ(j) = {s(1), bs(1)(1), . . . , s(j − 1), bs(j−1)(j − 1)} , j ≥ 2 . (3)

Note thats(j) is the channel chosen by adopting strategyΓ at timej, i.e.,s(j) = Γ(Φ(j)).

The payoff function is the expected units of informations the cognitive user is able to transmit
through a block

WΓ = E







T
∑

j=1

bs(j)(j)







=
T
∑

j=1

N
∑

i=1

pi Pr{Γ(Φ(j)) = i} . (4)

and the regret function is

RΓ =

T
∑

j=1

p∗ −
T
∑

j=1

N
∑

i=1

pi Pr{Γ(Φ(j)) = i} , (5)

wherep∗ = max{p1, . . . , pN}.

With the MAB problem well formulated, we now are ready to proceed to learning algorithms.

3 Learning Algorithms

3.1 Upper Confidence Bound

In [5], Agrawal defines a family of policies based on the man value of the reward. These policies
are referred as the Upper Confidence Bound (UCB) algorithms.The main idea of UCB is to add a
bias factor to the mean value of the reward. The algorithm first selects each channel once. Then, at
time slotj, UCB chooses channels(j) such that

s(j) = argmax
i∈N

(

xi(j)

yi(j)
+

√

σ log j

yi(j)

)

, (6)

whereyi(j) is the number of times channeli has been chosen to access till timej − 1, xi(j) =
∑j

t=1 vi(t), vi(t) is the number of time slots for which the cognitive user has sensed channel i to be
free till time t− 1, andσ is a design parameter chosen to be 2 in [5].

3.2 Upper Confidence Bound Tuned (UCBT)

The UCBT algorithm was first proposed by Aueret al. in [6]. The main characteristic of the
UCBT is the use of empirical variance in the bias sequence. Thus, the exploration is reduced for the
channels with small reward variance. The UCBT algorithm chooses channelsi(j) such that

si(j) = argmax
i∈N

(

zi(j) +

√

(zi(j)− (zi(j))2)σ log j

yi(j)
+

c log j

yi(j)

)

, (7)

wherezi(j) =
xi(j)
yi(j)

andc is also a design parameter free to adjust.
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3.3 Discounted UCB (DUCB)

The discounted UCB [7] adds a discount factor to the originalUCBT algorithm. The average reward
are weighted as

ẑi(j) =

∑T

t=1 γ
T−t
i xi(t)

n̂i(j)
, n̂i(j) =

T
∑

t=1

γT−t
i 1s(t)=i} , (8)

where0 < γi < 1 is the discount factor for channeli. The factorγi represents how fast channel
i changes. The discounted UCB is especially suitable for wireless channels because of the time
varying nature of wireless environment. The algorithm assigns less weight for old data and more
weight for fresh data.

3.4 Sliding Window UCB (SWUCB)

Another practical algorithm the sliding window UCB [8]. Thedifference between SWUCB and
DUCB is that SWUCB only uses a window of lengthl and only consider the average reward within
this window. The window length decreases as the dynamic environment changes faster.

3.5 Combined UCBT and DUCB

In this section, we proposed a novel UCB which combines the UCBT and the DUCB algorithms.
The combined algorithm adopts the Equation (8) as average reward function and uses the selection
criteria of DUCB. Therefore, the selection criteria of the new algorithm is expressed as

si(j) = argmax
i∈N

(

ẑi(j) +

√

(ẑi(j)− (ẑi(j))2)σ log j

yi(j)
+

c log j

yi(j)

)

, (9)

whereẑi(j) is given in Equation (8).

The combined algorithm enjoys the benefits of both UCBT and DUCB, therefore it considers the
effect of the empirical variance, as well as the time varyingnature of wireless channels.

4 Simulation Results

In this section, we provide the simulation results for all the MAB algorithms introduced in this
paper as well as the proposed new algorithm. The test scenario includes 20 channels with time
block lengthT = 100 and 2000 blocks in total. The wireless channels are generated according to
the IEEE standard 802.11. The simulation results includingaverage regret, variance of regret and
the percentage of time choosing the optimal channel are plotted in Figure 2, 3, and 4. It can be
observed that, although UCB exhibits the highest average regret and regret variance, it performs
best in terms of the percentage of time choosing the optimal channel. UCBT performs best in terms
of regret variance and SWUCB exhibits the best average regret. The performance of the proposed
algorithm lies in between that of UCBT and SWUCB. However, ithas better optimal channel chosen
percentage than those two algorithms.

5 Concluding Remarks

In this paper, we propose to make use of the MAB problem model to formulate the spectrum access
problem in cognitive radio in the context of wireless communication. Several existing algorithms for
solving the MAB problem are introduced. We also proposed a novel algorithm, the combined UCBT
and SWUCB algorithm to address the problem. Performance of these algorithms are evaluated under
wireless channels generated by the IEEE 802.11 standard model.

Several aspects worth further investigation as potential future work. First, although the simulation
results demonstrates its advantage of the proposed scheme,it is necessary to derive the theoretical
bounds on regrets in order to evaluate exactly how good the scheme is. Moreover, multiple cognitive
users can be included in the network model. Finally, the workcan be extended by adding the actual
behavior model of the primary users to generate the probability distribution of channels being free.
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Figure 2: Average regret.
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Figure 3: Variance of regret.

References

[1] Mitola, J. (2000) Cognitive radio: an integrated agent architecture for software defined radio. Royal Institute
of Technology (KTH), Stockholm, Sweden.

[2] Gittins, J. & Jones, D. (1974) A dynamic allocation indices for the sequential design of experiments.
Progress in Statistics, European Meeting of Statisticians, vol. 1, pp. 241-266.

5



270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

0 200 400 600 800 1000 1200 1400 1600 1800

0.4

0.5

0.6

0.7

0.8

0.9

1

Observation period

%
 b

es
t c

ha
nn

el
 c

ho
se

n

 

 

UCB
UCBT
DUCB
Combined UCB

Figure 4: Percentage of best channel chosen.

[3] Whittle, P. (1988) Restless bandits: activity allocation in a changing world.Journal of Applied Probability,
vol. 25.

[4] Lai, L. & Gamal, H. El & Jiang, H. & Poor, H. V. (2007) Cognitive medium access: exploration, exploitation
and competition.IEEE/ACM Trans. on Networking, vol.10, no. 2, pp. 239-253.

[5] Agrawal, R. (1995) Sample mean based index policies withO(log n) regret for the multi-armed bandit
problem.Advances in Applied Probability, vol. 27, pp. 1054-1078.

[6] Auer, P. & Cesa-Bianchi, N. & Fisher, P. (2002) Finite time analysis of the multiarmed bandit problem.
Machine learning, vol. 47, pp. 235-256.

[7] Kocsis, L. & Szepesvari, C. (2006) Discounted UCB.2nd Pascal Challenge Workshop.

[8] Garivier, A. & moulines, E. (2008) On upper-confidence bound policies for non-stationary bandit problems.
Available from http://arxiv.org/PScase/arxiv/pdf/0805/0805.3415v1.pdf

6


	Introduction
	Network Model
	Problem Formulation

	Learning Algorithms
	Upper Confidence Bound
	Upper Confidence Bound Tuned (UCBT)
	Discounted UCB (DUCB)
	Sliding Window UCB (SWUCB)
	Combined UCBT and DUCB

	Simulation Results
	Concluding Remarks

