
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Experiments with Learning for NPCs in 2D shooter

Anonymous Author(s)
Affiliation
Address
email

Abstract

Machine learning for modeling the behavioral and cognitive activity of non-player
characters (NPCs) in video games is a promising field. While most of the main-
stream and successful games in the game market mainly rely on an ’illusion’ of
AI with no learning at all, they get away with better graphics and other promising
game features. Furthermore, the character behavior is usually a static rule based
scripting that maps states and actions. Games that are built on such static scripts
are unable to hold on to the interest of the game player as one eventually finds a
loop hole and exploits the same. Dynamic scripting is one way to incorporate dy-
namically changing features in a game. But even that would need the developer to
foresee each and every aspect while script creation and would exhibit some kind
of repetitiveness in NPC behaviors. In this paper, a simple 2D shooter scenario
has been used as an example to model the NPCs that learn from the player’s game
playing techniques.

1 Introduction

World video game market is expected to exceed $ 61.9 Billion by 2012, according to a new report
by Global Industry Analysts, Inc. The consumer base ranges from children to young adults as well
as grown-ups. Shooter games (first person/third person/others) make up for a considerably large
cut of the pie. One of the most compelling yet least exploited technologies in games these days is
machine learning. Hence, there is still a vast window of opportunity to make video games even more
interesting from the player point of view, if these techniques are used correctly.

As was stated before, the action performed by non-playing characters are usually determined by
the underlying game AI. A point to note here, is that in this paper the term ’AI’ is used in it’s
academic sense and not in the ’game industry’ sense. In the latter sense, AI has a broader meaning,
which encompasses techniques like path-finding, nearest neighbor etc. Programming AI for NPCs
in shooter games is a problematic task because of two main reasons. First, the developer has to come
up with all the possibilities and states of the game the character might encounter. Based on numerous
combinations of those, one has to formulate rules for subsequent states and actions. The planning
doesn’t stop here as different actions might lead into different states and thus the decision process
gets more complex. Add to these the fact that games will only get complicated with time to attract
more audience. Second, since all possible elements of the character’s response is frozen before the
game is shipped, the gameplay will have a limited number of ’elements of surprises’ for the player
and soon will exhibit repetitiveness both in actions and general behavior. This is highly likely with
most of the games, and is bound to happen sooner than later as the player gains experience.

Applying ML to games, by no means is a recent technique. A technique similar to temporal differ-
ence learning for checkers was first employed by Samuel back in 1959. Since then, ML techniques
have been applied to different types of computer games ranging from board games to high-tech
graphics based video games. From the player perspective, there can be two forms of learning in
shooter based games, out-game learning (OGL), where everything is learned offline and learning

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

stops once the game is shipped and in-game learning (IGL), which as the name suggests has the
game characters learning adapt to the gameplay. OGL can again be broadly classified into two types
based on how and when exactly the learning happens. The first type is when a game has two modes
of play, a normal ’play’ mode, which as the name suggests is the normal gameplay and the other is
a training mode where one trains the NPCs according to the behavior desired in the gameplay. The
other type is usually based on evolutionary methods where, agents/ NPCs are trained (evolved) as
the game is played. The player may or may not specify the kind of evolution that is desired. In this
paper, the first type of OGL is considered and few machine learning techniques are experimented
with, in a simple two dimensional shooter game.

The rest of the paper is organised as follows.Section 2 deals with the details of feature selection,
game rules and the machine learning tools and techniques employed in this paper. Details of the
implementation of the paper is explained in 3. In section 4, the results are presented and related
explanations are given. A summary of the task as well as the conclusion is done in section 5.
Prospective for future work are highlighted and discussed in section 6. References are listed down
in section 7 .

2 Overview of Learning Method

In the presented work, the behavior of the NPCs are modeled using Artificial Neural Networks. The
main idea is to use appropriate features selected from the data recorded from real persons’ game-
play to train and model the behavior of the computer BOT. The learning in the ANNs has been
implemented using the backpropagation algorithm, explained in section 2.3. The next subsection,
2.1 highlights the motivation behind going for collecting data from one’s gameplay instead of com-
ing up with an optimization or cognitive model for the character. Then section 2.2, deals with the
general rules and selection of features to train the network for getting meaningful outcomes.

2.1 Motivation

A very quick answer to what all factors come into play when modeling the behavior for an NPC,
is readily available once it is looked at from a human point of view. Let us list down some of the
pertinent ’state’ based questions that often get considered when one is playing a simple shooter game
of some sort. It is assumed that boundary and other complicated environmental factors are not taken
into account.

• Which opponents are shooting and who are not?

• How far is the missile/firearm that has been launched at me?

• Which opponents have me in their view/ have a clear shot ?

And, given the answer to the above questions, the task is now to answer the following ’action’ based
questions.

• When to moving towards and when to move away from an opponent?

• which opponent to attack first?

2.2 Rules and Feature Selection

In the presented paper, a simple 2D shooter game is created for consideration. To emphasize more
on the use of machine learning and to avoid other complicacies, a game from scratch was preferred
over working on an already established source code. A screenshot of the simulation is shown in
figure 1.The goal, to win a round of the game is to either survive for a specific duration of time or
kill all the opponents, whichever done first. For simplicity, the characters (now onwards referred to
as ’shooter’), can only move in 4 directions i,e, along the positive and negative; x and y axes. The
shooters are equipped with missiles which they can fire one at a time per target.

The problem at hand is slightly different from conventional machine learning examples in the sense
that there is complete freedom in selecting the dataset for training the model. A naive approach is
to randomly select as many examples from the state space of the game. This however is wasteful as

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Figure 1: A screen from the game, the sky blue
shooter is trained by a neural network

Figure 2: The overall model structure, U, V,W
and M represent the nearest 3 neighbors and the
missiles’ location respectively. The network out-
puts the velocity R of the shooter.

the interest is generally on few key states e.g how a human controlled shooter evades the missiles
that are shot at him. Also, it is quite likely that if random garbage data is fed to the model, it will
ultimately learn very little of the main objective. Hence it becomes utmost important to record data
at specific moments only. A little tuning goes into selecting the optimum amount of examples i.e.
not too low for the model to learn little to nothing and neither too many for it to over-learn. Having
said that, it is also vital to not push the data sampling rate too high, as then it becomes difficult to
collect enough data. In present work, data is sampled at every N = 10 gameticks.

Selection of appropriate features is always more vital to obtaining better results than selec-
tion of the training method or the quantity of the dataset. To model the movement of the shooter, it’s
three nearest neighbors and the closest missile that has been targeted at him are taken into account.
All the data recorded are converted to the frame of reference of the shooter. That is rather than
considering the origin to be at some fixed point in the space, the world is transformed such that the
origin is with respect to the shooter. The model is designed to output the velocity of the shooter
given the inputs described above. In the training phase, one of the shooters is controlled by a human
being and others are programmed to target it. This although is unlikely in a real game scenario
(since others will not ’always’ target a particular shooter) but nonetheless, the shooter is trained to
evade worst case scenarios. Ideally, when part of a large scale video game, the user would have full
control on the way the training phase is carried out.

2.3 ANN with Backpropagation for navigation

In this work, a single hidden layer neural network is used to model the dependency of the navigation
(i.e. movement in the arena) of the shooter, given the features as inputs. Neural networks are
chosen to learn the dependency of the aforementioned features on the shooter’s velocity because
they are both compact and computationally efficient in the run time, making realtime outcome of
results possible. The training is modeled as a supervised classification problem, in which given the
input, the task is to assign one of the four possible velocity directions to the output. The objective
function is formulated as a negative log likelihood function, as shown in equation-1 and the weights
and biases at various layers are updated by minimizing it over the training dataset with respect to
respective variables.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Figure 3: The detailed neural network architecture. The input is a 8 dimensional vector and the
output, a 4 dimensional one. One hidden unit with 8 neurons are used.

The ANN architecture selected in the presented work is very simple and intuitive. The input and
the output layer has ni = 4 and d = 8 neurons respectively, corresponding to the input and the
output vectors shown in figure 3. Note that, the input variables are 2D vectors and the outputs are
essentially class labels, which in this case represent the four possible direction of movement. The
hidden layer consists of nh = 10 neurons. Adding more neurons to the hidden layer or adding an
extra layer to the network provided little to no benefit and unnecessarily increased the computational
load.

L = −
n∑

i=1

d∑
j=1

tij log(pij) (1)

In the likelihood equation 1, n represents the number of examples available to train the model, d = 4
is the number of neurons in the output layer, corresponding to the four possible direction of motion
as mentioned before in section 2.2. Hyperbolic tangent activation function tanh is used to map the
output of the hidden layer to the (−1, 1) range. Softmax functions (equation - 2 ) are used to force
the output between (0, 1) so as they can be interpreted as probabilities. tij is an indicator which tells
us which output j, input i maps into. Thus it is 1 if input vector i belongs to class j, else it is 0. An
expression to yield the error, given a batch of data X, y to train the network, is shown in equation 3.

pj =
oj∑d

k=1 exp(ok)
(2)

ebatch =

∑n
i=1(1− ti,ki

)

n
,where ki = max

j
pij (3)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

3 Implementation

The system is implemented in python. External packages numpy and pickle are used for computa-
tions and IO. The graphics aspect of the game uses the pyopenGL package and pyopenGL.GLUT
as the window manager. The neural network used for training the shooter is the one that was imple-
mented in assignment 5 of the course.

4 Results

According to the experiments carried out, about 5000 samples are enough to train a shooter to
navigate accurately through a arena containing atmost 4 other shooters that are programmed only to
shoot at the former (i.e. the current location of the shooter is made available to others). However, if
other shooters are not explicitly given the location of their target and instead are forced to ’watchout’,
the learned shooter is capable to survive longer and tackle more opponents. It takes about 100 epochs
of the training data, for the validation error to stabilize at a value of E = 0.1. A sample navigation
run of the learned shooter is demonstrated in this video. The execution, as mentioned before, occurs
is in realtime.

5 Conclusion

A simple 2D game implementing a neural network to model the navigation behavior of a NPC is
presented. The dataset for training and validating the network was recorded during the gameplay
of a human player. The network is then used to obtain the best possible move for a NPC given a
particular game situation (which in this case is a vector consisting of the nearest three opponents’
and the approaching firearm’s relative position. A clear advantage of using neural networks for
doing this task, over any other state, action and reward based decision model, is that the later is
highly likely to be computationally more expensive to be evaluated in realtime. ANNs on the other
hand break down an otherwise entangled decision tree into a much simpler mathematical equation
containing of weighted summations and easy function operations.

6 Further Work

The current work has lots of scope to be worked upon and improved. Infact, this work creates a basic
framework and opens up a gate for future possible findings in realms of adaptation in gameplay of
survival and/or shooter based games. The work can be extended by considering the situation in 3D.
More freedom in terms of movement may be included so as the problem could then be tackled as a
higher dimensional regression problem instead of a classification one. Also, the fact that almost any
other real life counterpart can be added to a video game, broadens the scope for instilling intelligence
and automated learning into it. A simple example would be making the NPCs capable to experiment
on its own and learn how to use it’s surroundings to pose new threats to the player, that might bring
in elements of surprise and fresh interest. This in turn would boost the longevity of the game and
directly impact revenue associated with the production house of the game.

7 References

[1] John E. Laird & Michael van Lent (2005) Machine Learning for Computer Games, Game De-
velopers Conference , GDC-2005

[2] Jonathan Dinerstein, Parris K. Egbert, Hugo de Garis and Nelson Dinerstein (2004) Fast and
learnable behavioral and cognitive modeling for virtual character animation. Computer Animation
and Virtual Worlds15: 95-108 (DOI: 10.1002/cav.8)

[3] Ken Mott (2009) Evolution of Artificial Intelligence In Video Games: A Survey Survey paper

[4] Samuel A,L. (1967), Some Studies in Machine Learning. Using the Game of Checkers. II -
recent progress, IBM Journal

[5] Aaron Hertzmann (2003), Machine Learning for Computer Graphics: A Manifesto and Tutorial

5

http://www.youtube.com/watch?v=ACr3ZJsQVrI


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

[6] Kenneth O. Stanley, Bobby D. Bryant & Risto Miikkulainen (2005), real-Time Neuroevlution in
the NERO Video Game, IEEE Transactions on Evolutionary Computation Vol. 9, NO. 6

[7] Pieter Spronck, Marc Ponsen, Ida Sprinkhuizen-Kuyper (2006) & Eric Postma, Adaptive Game
AI with Dynamic Scripting, Journal of Machine Learning, Vol. 63, Issue 3

6


	Introduction
	Overview of Learning Method
	Motivation
	Rules and Feature Selection
	ANN with Backpropagation for navigation

	Implementation
	Results
	Conclusion
	Further Work
	References

