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Abstract

We consider supervised dimensionality reduction with logistic regression when
labels and features of data are all binary. This model combines learning dimen-
sionality reduction model with learning regression and classification model for the
purpose of reducing classification error. Closed-form update rules of the param-
eters are also derived in detail. This model is useful in statistical genetics where
the features are usually binary or multinomial with some binary or multinomial
labels. We apply the proposed method to single-nucleotide polymorphism data
to classify samples of different races. From the comparison of the results, the
supervised dimensionality reduction outperforms unsupervised dimensionality re-
duction followed by logistic regression.

1 Introduction

Dimensionality reduction is important for many statistical learning tasks, especially when the di-
mension of the data is much larger than the number of samples. In statistical genetics, the dimension
of features (e.g., the allele statuses of millions of locations) is usually huge, but the number of sam-
ples (i.e., the number of DNA sequenced) is generally limited since DNA sequencing is expensive.
Dimensionality reduction is recommended or even necessary in such cases.

In unsupervised learning, the objective of dimensionality reduction is to find a low-dimensional
representation which preserves most important properties of data. Principal component analysis
(PCA) is a popular method for unsupervised dimensionality reduction (UDR) for the advantage
of computational efficiency. However, interpretation of PCA has always been a difficult task in
many problems. Recently, PCA attracts the attention of researchers in genetics again [1] with freely
available data from the International HapMap Project (HapMap) and the Human Genome Diversity
Panel (HGDP). McVean [2] showed that PCA is not only useful, but also interpretable in genealogy.

In supervised learning, the information of responses can be combined with the information of fea-
tures to choose the low-dimensional representation in the dimensionality reduction, which is shown
useful when the objective is classification [3]. This is of particular interest in genetics. If ethnical
labels of participants are given, we can use those informations to assist dimensionality reduction
for the features, which are allele statuses in millions of locations. The application of supervised
dimensionality reduction (SDR) in genetics is still a new topic.

For parameter estimations, the likelihood function may not be convex for all parameters involved in
supervised dimensionality reduction (SDR). Closed form update rules with alternate minimization
procedure are proposed for unsupervised dimensionality reduction when features are binary [4], and
it is claimed that it can be generalized to supervised dimensionality reduction when both responses
and features are exponentially distributed without details [3].
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In this project, we consider supervised dimensionality reduction when responses and features are all
binary. We derive closed form update rules of parameters with alternate minimization procedures.
We apply this SDR method (logistic-SDR) to a classification problem in genetics, and show that
misclassification error can be reduced comparing to UDR followed by logistic regression (logistic-
UDR).

2 Supervised dimensionality reduction with logistic regression
(logistic-SDR)

Let X be an N × D data matrix and Xnd be the (n, d)-th entry of X, where N is the number
of identical and independent distributed (i.i.d.) samples and D is the number of binary features
(n = 1, 2, · · · , N and d = 1, 2, · · · , D). Let Xn denote the n-th row of X.

Let Y be an N × K data matrix and Ynk be the (n, k)-th entry of Y, where D is the number of
binary labels (n = 1, 2, · · · , N and k = 1, 2, · · · ,K). Let Yn denote the n-th column of Y.

We assume that Xnd is a Bernoulli random variable with parameter pnd and density

PXnd
(xnd|pnd) = pxnd

nd (1− pnd)1−xnd = σ(θXnd
)xndσ(−θXnd

)1−xnd ,

where θXnd
= log{pnd/(1− pnd)} is the natural parameter of Xnd, and σ(x) = 1/{1 + exp(−x)}

is the sigmoid function.

Similarly, we assume that Ynk is a Bernoulli random variable with parameter qnk and density

PYnk
(xnk|qnk) = qynk

nk (1− qnk)1−ynk = σ(θYnk
)ynkσ(−θYnk

)1−ynk ,

where θYnk
= log{qnk/(1− qnk)} is the natural parameter of Ynk.

We assume that the parameter matrix θX = (θXnd
) can be represented by a linear model in an

L-dimensional (L < D) space:

θXnd
=

L∑
l=1

UnlVld + ∆Xd
,

where the rows of the L × D matrix V denote the basis vectors of the low-dimensional space, the
columns of the N × L matrix U denote the coordinates of θXnd

, and ∆Xd
denote the bias. For

simplicity, we include (∆X1
,∆X2

, · · · ,∆XD
) as the (L+ 1)-th row of V, and include a column of

all 1’s as the (L+ 1)-th column of U, i.e.,

θXnd
=

L+1∑
l=1

UnlVld, or θX = UV.

We consider the n-th row of U, Un, as a low-dimensional representation of the corresponding Xn,
and use it to predict the labels Yn. We assume that the parameter matrix θY = (θYnk

) can be
represented by a linear model in an L-dimensional space:

θYnk
=

L∑
l=1

UnlWld + ∆Yd
,

where the rows of the L ×D matrix W denote the basis vectors of the low-dimensional space, the
columns of the N ×L matrix U denote the coordinates of θYnk

, and ∆Yd
denote the bias. Similarly,

for simplicity, we include (∆Y1
,∆Y2

, · · · ,∆YK
) as the (L+ 1)-th row of W, and include a column

of all 1’s as the (L+ 1)-th column of U, i.e.,

θYnk
=

L+1∑
l=1

UnlWlk, or θY = UW,

Therefore, the log-likelihood for the matrix of features X, is given by

LX(θX) =
∑
n,d

[xnd log{σ(θXnd
)}+ (1− xnd) log{σ(−θXnd

)}],
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and the log-likelihood function for the matrix of labels Y, is given by

LY(θY ) =
∑
n,k

[ynk log{σ(θYnk
)}+ (1− ynd) log{σ(−θYnk

)}].

For unsupervised dimensionality reduction, it is shown that U and V can be calculated from
LX(U,V) [4]. For supervised dimensionality reduction, we can write the joint likelihood for both
X and Y [3]:

LX,Y(U,V,W) = αLX(U,V) + LY(U,W),

where α is a parameter to weight the influence of two likelihoods.

The logistic-SDR problem is to find the solution of

Û, V̂,Ŵ = max
U,V,W

LX,Y(U,V,W) = max
U,V,W

{αLX(U,V) + LY(U,W)}. (1)

3 Closed-form update rules

Rish et al. [3] mentioned that equation (1) is not convex for all parameters, but auxiliary functions
can be used to find local solutions analogous to the method proposed by Schein et al. [4]. Rish et al.
[3] did not provide detailed update rules of parameters. We provide the detailed update rules here
for the problem that both X and Y are binary.

According to Rish et al. [3], an auxiliary function for L(θ) is a function Q(θ̂, θ) such that L(θ) =

Q(θ, θ) and L(θ̂) ≥ Q(θ̂, θ) for all θ̂. Therefore, L(θ) is non-decreasing under the update

θ̂ = argmax
θ̂

Q(θ̂, θ).

Rish et al. [3] also showed that if we have an auxiliary function Q(θ̂X ,θX) for LX and an auxiliary
function Q(θ̂Y ,θY ) for LY, then αQ(θ̂X ,θX) +Q(θ̂Y ,θY ) is an auxiliary function for LX,Y.

Schein et al. [4] showed for UDR, we can choose

Q(θ̂X ,θX) =
∑
n,d

{
log 2− log cosh(θXnd

/2) +
TXnd

θ2Xnd

4
+

(2Xnd − 1)θ̂Xnd

2
−
TXnd

θ̂2Xnd

4

}
,

(2)
where TXnd

= tanh(θXnd
/2)/θXnd

.

Analogous to (2), for labels Y, we can choose

Q(θ̂Y ,θY ) =
∑
n,k

{
log 2− log cosh(θYnk

/2) +
TYnk

θ2Ynk

4
+

(2Ynk − 1)θ̂Ynk

2
−
TYnk

θ̂2Ynk

4

}
,

(3)
where TYnk

= tanh(θYnk
/2)/θYnk

.

Therefore, we can choose the auxiliary function

Q(θ̂X ,θX , θ̂Y , θ̂Y ) = αQ(θ̂X ,θX) +Q(θ̂Y ,θY ). (4)
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For V update, we fix U, i.e., let θX = UV, θ̂X = UV̂, and calculate the derivative of (4) with
respect to V̂ld

∂Q

∂V̂ld
= α

N∑
n=1

{
(2Xnd − 1)

2
Unl −

TXnd

4
2θ̂Xnd

Unl

}

=
α

2

N∑
n=1

{
(2Xnd − 1)Unl − TXnd

L+1∑
l′=1

Unl′ V̂l′dUnl

}

=
α

2

{
N∑
n=1

(2Xnd − 1)Unl −
L+1∑
l′=1

(
N∑
n=1

TXnd
Unl′Unl

)
V̂l′d

}

≡ α

2

{
bXdl

−
L+1∑
l′=1

AXdll′ V̂l′d

}
. (5)

Therefore, the d-th column of V̂, V̂d, can be solved from the linear equations
L+1∑
l′=1

AXdll′ V̂l′d = bXdl
,

where AXdll′ and bXdl
are defined in (5).

For W update, we fix U, i.e., let θY = UW, θ̂Y = UŴ, and calculate the derivative of (4) with
respect to Ŵlk:

∂Q

∂Ŵlk

=

N∑
n=1

{
(2Ynk − 1)

2
Unl +

TYnk

4
2θ̂Ynk

Unl

}

=
1

2

N∑
n=1

{
(2Ynk − 1)Unl + TYnk

L+1∑
l′=1

Unl′Ŵl′kUnl

}

=
1

2

{
N∑
n=1

(2Ynk − 1)Unl +

L+1∑
l′=1

(
N∑
n=1

TYnk
Unl′Unl

)
Ŵl′k

}

≡ 1

2

{
bYkl

+

L+1∑
l′=1

AXkll′ Ŵl′k

}
. (6)

Therefore, the k-th column of Ŵ, Ŵk, can be solved from the linear equations
L+1∑
l′=1

AYkll′ Ŵl′k = bYkl
,

where AYkll′ and bYkl
are defined in (6).

For U update, we fix V and W, i.e., let θX = UV, θ̂X = ÛV, θY = UW, θ̂Y = ÛW, and
calculate the derivative of (4) with respect to Ûnl:

∂Q

∂Ûnl
= α

D∑
d=1

{
(2Xnd − 1)

2
Vld +

TXnd

4
2θ̂Xnd

Vld

}
+

K∑
k=1

{
(2Ynk − 1)

2
Wlk +

TYnk

4
2θ̂Ynk

Wlk

}

=
α

2

D∑
d=1

(2Xnd − 1)Vld +
1

2

K∑
k=1

(2Ynk − 1)Wlk

−
L+1∑
l′=1

(
α

2

D∑
d=1

TXnd
Vl′dVld +

1

2

K∑
k=1

TYnk
Wl′kWlk

)
Ûnl′

≡ bXYnl
−
L+1∑
l′=1

AXYnll′ Ûnl′ . (7)
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Therefore, the n-th row of Û, Ûn, can be updated from the linear equations

L∑
l′=1

AXYnll′ Ûnl′ = bXYnl
,

where bXYnl
and AXYnll′ are defined in (7). Notice that the last column of U is fixed as 1, so the

update rule is only used for the first L column of U.

4 Application to the SNP data

A single-nucleotide polymorphism (SNP) is a DNA sequence variation occurring when a single
nucleotide in the genome differs between members of a biological specie or paired chromosomes in
an individual. It has been estimated that the entire human population harbors 10 million so-called
“common” SNPs with a minor allele frequency (i.e., the percentage of all living humans that have
the rarer nucleotide (allele) for this SNP, as opposed to the other more frequent nucleotide) of greater
than 5% in the human population. According to Li et al. [1], over 6 million of these SNPs have been
identified across the human genome.

Human Genome Diversity Panel (HGDP) contains 49,553 SNPs of 938 participants from 53 different
races. For each SNP, the minor allele status is coded as 1 and the major allele status is coded as 0.
For this project, we only use the data of participants who are Han-Chinese (68), Japanese (56) or
Yoruba (42).

We apply the logistic-SDR discussed in this project with comparison to logistic-UDR. For logistic-
SDR, we apply SDR on the data, and learn the logistic regression model at the same time as the
dimensionality reduction model. For logistic-UDR, we first learn the UDR from data, and then learn
the logistic regression model on the coordinates U.

Figure 1 shows the projections of samples on the first three bases (PCs) if UDR is applied to data
with features only. From Figure 1, the samples are not separated on the low-dimensional space
(L = 2), especially for Han-Chinese and Japanese. We label Han-Chinese as 1 and other as 0, i.e.,
we want to classify whether the samples are Han-Chinese or not.
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Figure 1: The projections of samples on the first PC, the second PC and the third PC using UDR.

A logistic regression is applied to the data using the the coordinates on the first three PCs, but the
misclassification error is quite high (0.1807).

Figure 2 shows the projections of samples on the first three bases (PCs) if logistic-SDR is performed
(α = 0.01). From Figure 1, the samples are clearly separated on the low-dimensional space (L = 2),
as a consequence, the misclassification error is 0.

We also try different values of α, and notice that the misclassification error decreases when α de-
creases.
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Figure 2: The projections of samples on the first PC, the second PC and the third PC using normal
PCA.

5 Conclusion and future work

In this project, we derived closed-form update rules for supervised dimensionality reduction when
responses and features are all binary. This work is a generalization of Schein et al [4] on UDR to
SDR. Rish et al. [3] claimed a general result about SDR with generalized linear models, but they did
not provide detailed closed-form update rules. We went through detailed calculations in this project
when responses and features are all binary, and wrote code for logistic-UDR and logistic-SDR in
python.

We applied logistic SDR method to a classification problem in statistical genetics. We showed that
using logistic SDR method, we can find a low-dimensional representation of data and significantly
reduce misclassification error rate. This result is of importance in statistical genetics.

Rish et al. [3] proposed a general prediction step for new data without labels, but actually their
approach need the labels of those new data to proceed in the update steps. I do not think it makes
sense to use the labels of test data in prediction step. Future work may provide an alternative predic-
tion step for new data without labels using logistic-SDR. With such steps, we can divide data into
training and testing, and then make fair comparisons with other methods.

The choice of tuning parameter α is still an open question. Rish et al. [3] provided general comments
on the choice of α. Possible methods which subjectively choose α based on the data may be helpful
in future.
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