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Abstract

Research in psycho-physiology derives information about physical and emotional
state of people based on their physiological data (such as heart rate, skin temper-
ature). In this regard, many use machine learning techniques, especially classi-
fication techniques, to find patterns in the data. The importance of features on
the results of a classification task is well-known. However, most past studies in
this area, use a common set of statistical attributes (e.g. min, max etc.) extracted
from a physiological signal as classification features. But those statistical features
only capture partial information about a signal which can lead to high classifica-
tion error in some cases. In this project, I describe another type of feature, shape
features, and extract them using K-means clustering algorithm. I compare shape
and statistical features by looking at their error rate for gender classification on
a publicly available physiological dataset called DEAP [1]. According to the re-
sults, shape features with appropriate parameter setting lead to slightly lower error
rates. However shape features are much more computationally expensive. Thus,
using statistical attributes might be a more reasonable choice in many cases.

1 Introduction

Past research has shown that physiological data, such as heart rate, blood volume pressure, skin
conductance and temperature, are valuable source of information about a person’s physical and
psychological state [2, 3, 4]. Yet physiological data are usually noisy, considerably affected by
everyday activities, person-specific and day-dependent. These characteristics make it difficult to
use them without substantial processing and make for a big unknown problem space. The huge
number of unknowns regarding physiological signals makes it even difficult to define the extent
of the research problem properly. Some of the open questions in this area include: What type of
information resides in physiological data? What sort of questions can be addressed using these
data?

Previous work in this area has extracted various types of information from physiological data using
machine learning techniques. As an example, [2] use classification to determine drivers’ stress level
based on their physiological signals. Most classification work in this area use physiological data
as the feature space to predict information about a subject. For example, in a gender classification
task, the gender (female/male) labels are determined by using physiological data. Also valence
(like/dislike) classification, uses information heart rate etc. to find whether a person likes a music
track or not. Interestingly, most previous work use a somewhat similar set of statistical features (e.g.
max, min etc.) extracted from the whole or portions of a signal. In some cases, these statistical
features lead to low classification accuracy especially for like/dislike labels.

Although the impact of features on classification results are well known, most previous work use
a common set of statistical features (e.g. max, min etc.) and just vary the classification technique
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or even the study condition to achieve better results. To the best of my knowledge, no systematic
analysis is available that compares the appropriateness of different types of features for physiological
data. In this project, I describe two types of features and compare them based on their resulting
classification error. The two types of features include: 1) statistical attributes extracted from signals
such as max, min etc. (similar to past studies) 2) shape features extracted by applying K-means
clustering algorithm to the segments of physiological signals.

Section 2 presents the related work in classification of physiological data and available psycho-
physiological datasets. The methods section includes the description of the dataset used, followed
by an explanation of the two feature extraction methods. In the result section, first I show the shape
features extracted from the signals. Further, I evaluate the two feature sets by comparing their
resulting accuracy on a gender classification task. The discussion and conclusion section comes at
the end.

2 Related Work

Rsearchers at SPIN and CARIS labs at UBC have investigated physiological signals for estimating
emotions during the last couple of years. M. Pan1 used Unscented Kalman Filters to estimate the
valence states (continuous dislike to like ratings) of a subject in response to music tracks as stim-
uli. The input to the model were music features as well as the physiological data gathered from
the subject’s body including heart rate, skin conductance, skin temperature, blood volume pressure,
respiration, and muscle movements on the front head. The predication accuracy was highly varied
depending on the dataset and the subject. In an earlier work, S. Zoghbi2 used the kNN algorithm
to classify music tracks into three labels of ”dislike”, ”neutral”, and ”like”. Statistical attributes
of physiological signals such as mean, min, and max formed the feature space for the classifier.
Again the algorithm yielded different classification accuracy for different datasets. Also, the most
predictive features selected by the algorithm were not consistent for different datasets. Others have
worked on other aspects of using physiological data such as emotional tagging of movies or deter-
mining stress level in drivers [5, 2, 1, 3]

2.1 Available Datasets

Despite growing interest in psycho-physiological studies, only a few datasets are publicly available.
Most studies use their own collected dataset which makes it difficult to compare the results across
different studies.

Local Datasets at CARIS and SPIN: Mutual efforts in CARIS and SPIN labs at University of
British Columbia have lead to a number of datasets for music stimuli. These datasets have been a
valuable source of research. However, they mostly contain data from one participant, since there are
evidence on physiological signals being subject-specific.

DEAP dataset: [1] provides a publicly available multimodal dataset of physiological signals
called DEAP (A Database for Emotion Analysis using Physiological Signals). The dataset contains
40 bio-channels recorded from 32 participants (50% female, 19-37 years old) as they watched 40
excerpts of music videos. The participants rated each video on different scales such as valence
(like/dislike) and arousal (boring/exciting). The bio-channels include EEG (brain signals) and pe-
ripheral physiological signals. The duration of each video clip (stimulus) was 60 seconds with a 3
second baseline data collection before each video. The physiological signals were down sampled
to 128Hz. [1] points to some other publicly available physiological datasets such as the enterface
2005 emotional database [4] and MAHNOB-HCI [5].

3 Methods

In this section, first I briefly explain the dataset used in this project. Then, the techniques for ex-
tracting two feature sets and their comparison are discussed in more details.

1M. Pan is affiliated with CARIS lab, Department of Mechanical Engineering, UBC
2S. Zoghbi is affiliated with CARIS lab, Department of Mechanical Engineering, UBC
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3.1 Dataset

In this project, I use the peripheral physiological data of the first ten subjects from the DEAP
dataset [1]. The eight captured peripheral physiological signals including horizontal EOG(1) and
vertical EOG(2), EMG signal from Zygomaticus (3) and Trapezius (4) muscles, skin conductance
(5), respiration(6), blood volume pressure(7), and skin temperature (8). EOG signals indicate eye
activity/blink rate of the subject, while EMG signals capture muscle movements on chicks and jaw
line. Respiration shows the breathing rate and blood volume pressure is an indicator of heart activ-
ity. The number of subjects (10 participants, 6 female, 4 male) is chosen for computational purposes
and the signals are downsampled to 8 points per second. In the following, a trial refers to all phys-
iological signals captured while a subject was watching one video clip. So there is a one to one
correspondence between trials and video clips for each subject.

3.2 Machine Learning Techniques

Statistical Features: The first set of features (statistical attributes) has been the primary choice of
researchers in many signal classification tasks. These features are efficiently extracted and usually
result in good approximation of the shape of a signal. However, they sometimes fail to capture
differences between especially long signals. As a result researchers tend to use additional features
(e.g. in frequency domain) or extract the statistical attributes from multiple segments of a signal.
This can lead to large numbers of features.

The statistical features typically used in psycho-physiological literature include max, min, average,
standard deviation, skewness, and kurtosis. To form the feature vector, first I divide each of the
eight physiological signal from a trial into a number of segments (1, 3, 5, 7, or 14 segments are used
for cross-validation). Then the seven abovementioned statistical attributes are computed for each
segment. The extracted attributes for all segments of the eight physiological signals in a trial com-
pose the final feature vector for that trial (size of feature vector= number of segments*7 attributes*8
signals).

K-means Features: The second set of features (shape bases) is motivated by the works of [6] and
[7]. The idea is to extract local shapes representing signals and classify based on the existence or
location of those shapes in a signal. [6] proposes the idea of using local shapes for classification of
time series. [7] shows that K-means can extract local shape bases and achieves high classification
accuracy for images. Since the main shortcoming of statistical features is its deficiency in modeling
the shape of the signal, shape bases extracted by K-means algorithm form a potential feature set to
investigate.

In this project, I divide each physiological signal in the dataset to N segments by moving a window
over the signal (see Figure 1). I also use a pre-defined overlap between consecutive windows (seg-
ments) which is a common technique for dividing signals into segments. The resulting set of signal
segments is input to the K-means algorithm. K-means algorithm divides the signal segments to K
clusters with K centeroids. Those K centeroids show the average shape of signals in their clusters
and can be considered as shape features (bases). Thus, we have K shape features after applying
K-means to the signal segments.

To form the feature vector for a trial (a video clip), each signal is decomposed to its segments again
by using the overlapping window. Then each segment is replaced by the corresponding cluster
number (Figure 1). The final feature vector for a trial (a datapoint) includes the result of the last step
for all eight physiological signals (See figure 1).

Using cross-validation on window/segment size, I set the window size to 16 signal values represent-
ing two seconds of the trial. Also, changing the window overlap between 1/4, 2/4, and 3/4 of the
window size and using cross-validation lead to an overlap of 8 signal values or one second (2/4 of
window size). Figures 3, 4, 5 show the cross-validation graphs for the number of shape features,
window size, and overlap size repectively.

Comparison of the two feature sets: In order to compare the value/utility of these two feature
sets, I use their error rate on the gender classification task. For both feature sets, I use the kNN
algorithm to perform the classification.
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Figure 1: Dividing the signal to segments using a moving window with overlaps- different colors
show different segments and are used to better illustrate the overlap- Also Showing the encoding of
the segments into shape features (cluster numbers)

k-Nearest Neighbours (kNN): Having the feature vector for a data point, the kNN algorithm
assigns the class label for that data point based on the majority vote of its k closest neighbours. For
statistical features, I use Eucledian distance as a similarity (proximity) measure. Hamming distance
is used for shape features (cluster numbers corresponding to shape features). In all classification
tasks, the number of neighbours (k) varies between 1 and 10.

4 Results

4.1 Shape features extracted from signals:

Figure 2 shows the shape features extracted from 198400 signal segments (10 subjects* 40 trials*
8 signals* 62 segments). The extracted shape features have different range of values. For example,
the first shape in figure 2 represents signal segments with large negative values, while the second
one represents large positive signal segments.

Figure 2: 25 Shape features extracted by K-means algorithm

4.2 Gender classification:

According to figure 3 and 4, the error rate for shape features drops by increasing the number of shape
features as well as by using smaller window size. This, on the other hand, increases the computation
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time. After setting the parameters for shape features with cross-validation, classification with shape
features achieves slightly lower error rates compared to the statistical features. The error rate of
12.83% is achieved for 50 shape features, window size= 2 seconds (16 signal values), overlap size=
1 second (8 values). The lowest error rate with statistical features is 13.5% (Figure 4). Despite
slightly higher error rate, statistical features are less computational-intensive and lead to almost
similar error rates.

Figure 3: Number of shape features(bases) vs. classification error

Figure 4: Error rate for shape features and statistical features vs. window size-horizontal axis shows
window size in seconds- Overlap size is 1 sec, Number of features is 50

5 Discussion and Conclusion:

In this project, I compare two feature sets for classification tasks on physiological data. The first
feature set is statistical attributes extracted from the signals and is commonly used in psycho-
physiological studies. The second feature set, motivated by the work of [6] and [7] is composed
of shape features extracted by K-means clustering algorithm. The error rates of these two feature
sets on gender classification provides a measure of the appropriateness of them for physiological
data.
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Figure 5: Error rate for shape features vs. overlap size (horizontal axis shows overlap size in sec-
onds)

According to the results, the shape features can achieve similar or slightly lower error rates by
carefully setting the parameters (e.g. number of shape features, overlap size, window size) with
cross validation. However, these settings lead to higher computational cost compared to statistical
features. Comparing the gained classification rate with the computational cost of the two feature sets,
statistical features seem to be a more reasonable choice compared to the shape features extracted
using the abovementioned method.

In addition, As mentioned before the generated shape features by K-means algorithm represent
different value ranges of the signals. Some shape features represent high positive signal segments,
some low positive signal segments etc. Thus, they include similar information to more efficient
statistical features.

In terms of future work, research on other possible sets of features for time series data, and specifi-
cally physiological data, is valuable and can shed light onto the properties of these signals. This
is especially true because statistical features achieve unacceptably high error rates for valence
(like/dislike) classification tasks. Finally, further work is needed on sophisticated filtering of physi-
ological signals before feeding them into a classification algorithm. Such filtering can lead to better
comparison of features and also better classification results.
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