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Abstract 2 

Ultraconserved elements (UCEs) are DNA segments that are observed to be near 100% identical 3 
across all vertebrates including humans. Despite millions of years of evolution, natural selection 4 
has selected for these sequences to remain unchanged, yet the functions of UCEs remain 5 
unknown. It is theorized that the edges of UCEs contain palindromic DNA sequences that may 6 
contribute to DNA structure regulation. The first step to validate this hypothesis is to formulate a 7 
model to classify where the UCE edges are. In this study, I constructed a hidden Markov model 8 
trained on evolutionary conservation profiles generated by bioinformatics software PhyloP and 9 
Phastcon to identify locations of UCEs and their edges on the human genome. My results 10 
demonstrate the usefulness of combining HMM with conservation profiles, and can be applied 11 
across entire human genome to find novel UCEs. These findings form the basis to testing the 12 
palindromic hypothesis, and further allow geneticists to carry out additional downstream 13 
sequence analysis on UCEs to decipher their potential function(s). 14 

 15 

1  Background 16 
 17 

While this paper is ideally geared towards readers immersed in the field of bioinformatics, critical 18 
biological details necessary for understanding the paper are briefly highlighted. Readers are strongly 19 
encouraged to explore the relevant cited references if they feel overwhelmed by the biology mentioned.  20 
 21 
1 . 1  W h a t  a r e  U C E s  a n d  w h y  s h o u l d  w e  c a r e   22 
 23 

Almost all life forms on Earth contain DNA encoding genetic instructions necessary for 24 
carrying out survival functions. DNA is composed of 4 types of nucleotides: adenine (A), thymine (T), 25 
cytosine (C), and guanine (G) [1]. Evolution theory tells us that all modern species share a common 26 
ancestry over ~3.9 billion years ago [1]. If a segment of DNA is conserved between multiple species (ex. 27 
shared between humans, dogs, cats and rats), this segment of DNA most likely carries out an important 28 
biological function [1,2]. This is indeed true for many DNA sequences that code for proteins, where 29 
small mutations in these regions can lead to diseases like breast cancer and Parkinson disorder. 30 
Therefore, throughout the course of evolution, functional sequences are preserved with minimal changes. 31 
Conversely, if a DNA segment is not important for survival, we would expect to see that segment 32 
mutating and diverging over evolution time, and not conserved across species (ex. polymorphisms in 33 
humans) [2].  34 

Ultraconserved elements (UCEs) are DNA segments observed to be highly conserved from fish 35 
to primates [3]. They are first categorized in 2004 by Haussler et al., where a genomic comparison 36 
between human, mouse and rat genomes reveal certain segments of perfect conservation (i.e. 100% 37 
identity). No other DNA elements have such high degree of conservation [3]. This remarkable 38 
conservation implies they carry out certain functions in our body that make them very important (hence 39 
conserved). Mathematically speaking, if we assume UCEs do not carry out any function, then the chance 40 
of observing UCEs is estimated to be less than 10^-22 [3]. However, after 7 years of intense study, we 41 
still have little conclusion as to what functions these regions’ functions have, or what they do in our 42 
body. Their biological roles remain a mystery. 43 

To date, 481 UCEs have been identified in the human genome [3]. These are identified by simply 44 
searching for segments of human genome that show 100% identity with corresponding segments of genomes in 45 
rodents. Such method fails to address the following issues: 1) it does not incorporate level of conservation in 46 
other species like fish. UCEs exhibit high level of consideration across all known animals, and this method 47 
only looks at rodents and human. 2) It can only roughly pinpoint where UCEs are, but is unable to define the 48 



 2 

specific boundaries that mark the start and end of UCEs. 49 

 50 
1 . 2   P r o j e c t  g o a l  51 

 52 
This study marks the starting point of testing the hypothesis that UCEs play a role in gene regulation 53 

(i.e. regulating when and how much of a protein to be produced in the body at a given time). Our DNA is 54 
organized as a double-helix with 4 strands, 2 from the mom and 2 from the dad. I hypothesize that the 4 DNA 55 
strands at the UCE edges (edge defined as the boundary between a UCE and a non-UCE) possess palindromic 56 
sequences such that they form cross-overs where one DNA strand from one copy interacting with a DNA 57 
strand from another copy, and vice versa [see reference 4 for more details on cross-overs]. Cross-overs have 58 
been studied intensively in meiosis, mitosis and many other forms of structural variants where they play a role 59 
in gene regulation [4], but not in UCEs. If my theory is correct, I should see palindromic nucleotide sequences 60 
located at the edges of the UCEs.  61 

Prior method for detecting UCEs is incapable of pinpointing precisely where UCEs begin and end; 62 
one cannot look for palindromic sequences in the edges until one can first reliably call where these edges are. 63 
In this research, I employ a hidden Markov model (HMM) trained on evolutionary conservation data to 64 
characterize the precise start and end windows for UCEs. Once the UCEs edges are identified, this will 65 
facilitate genetic researchers to explore the sequence properties of the edges and see if palindromic sequences 66 
are indeed present, leading to great potential impacts for our understanding of the role(s) UCEs have in our 67 
body. 68 

Throughout the rest of paper, I define an UCE edge to be a window of 15 nucleotides, flanking 69 
the body of UCE and separating UCEs from non-UCEs. This number is arbitrarily chosen based on prior 70 
biological knowledge. 71 

 72 
2 Materials  and Method 73 
 74 
2 . 1       M a t e r i a l s  75 

 76 
A list of 481 known UCEs is obtained from Bejerano et al. [3]. The setup of HMM is facilitated by the 77 

General Hidden Markov Model library (GHMM, http://ghmm.org/). The evolutionary profiles used to train and 78 
test the HMM are downloaded from UCSC genome database [5]. These profiles are generated at the primate 79 
level, mammal level (which also includes primate species), and vertebrate level (which includes both primate 80 
and mammal species) via bioinformatics software PhyloP [5] and Phastcon [5].  81 

2 . 2       W h y  H M M  82 
 83 
The goal of using machine learning in this project is to accurately classify where UCEs edges 84 

are. There are at least over 481 UCEs in the human genome, and to manually classify all 481 edges is an 85 
exhausting task, while a machine learning approach will greatly streamline the process.  86 

Hidden Markov models (HMMs) have been widely deployed in bioinformatics from protein 87 
sequence alignment, protein family annotation, to gene-finding [6]. A HMM consists of M states that are 88 
used to annotate an input sequence. (ex. a string of DNA) [6]. The assignments of those states to each 89 
nucleotide (i.e. the classification) depend on a set of emission probabilities and transition probabilities. 90 
The prediction output is a state path with the highest overall probability, the so-called optimal state path, 91 
or Viterbi path [6].  92 

HMM in bioinformatics is especially powerful when there is an underlying biological structure 93 
to capture. For example, in gene-finding application, HMM allows researchers to capture the various 94 
components that make up a gene: promoters, introns, exons, splice junctions. Each position along the 95 
input sequence is dependent on the annotation assigned to the previous position(s). The nature of HMM 96 
makes it ideal for one to setup models to capture the dependency and structure of the underlying data, 97 
which would be difficult if working with other types of machine learning algorithms. For example, if 98 
one is to use multinomial classifier or random forest to classify nucleotides as UCE, edge, or non-UCE, 99 
it will be arduous to incorporate the dependencies between nucleotides with such algorithm, whereas the 100 
HMM makes this a straightforward process. 101 

 102 

2 . 2       T r a i n i n g  a n d  t e s t i n g  d a t a s e t s  103 
 104 



 3 

My training dataset consists of 100 known UCEs [3] plus a window of 200 nucleotides flanking 105 
both sides of each UCE to capture the neighboring non-conserved nucleotides. Within this set, each UCE 106 
and its flanking sequences are manually annotated by a trained geneticist, who assigned a label of “non-107 
UCE”, “edge” or “UCE” to each nucleotide. A nucleotide that is assigned “non-UCE” represents a 108 
nucleotide that is not part of the UCE. The nucleotide that is assigned “edge” represents the nucleotide 109 
that is part of the edge flanking one of the two sides of UCEs. The nucleotide that is assigned “UCE” 110 
represents the nucleotide that makes up the core body of the UCE. The size of test set is the remaining 111 
381 known UCEs not part of the training set. In the initial phase of the project, no manually annotation 112 
was given to the test set, but later on, for performance evaluation purposes, the geneticist manually 113 
examined the predictions made by the HMM on the test set and assessed the correctness. 114 

Since UCEs are defined by high level of conservation across species, I trained and tested my 115 
model on evolutionary profiles. Each UCE has 6 associated evolutionary conservation profiles. They are 116 
generated by programs PhastCons and PhyloP. Each program outputted 3 conservation profiles, 117 
corresponding to conservation for 8 primates, 31 placental mammals, and 44 vertebrates (see Materials). 118 
PhastCons works by fitting a phylo-HMM to the genomes by maximum likelihood and considers 119 
neighboring bases, while PhyloP score is a separate measurement of conservation that examines each 120 
base independently without taking neighbors into account. I considered different levels of conservation 121 
(i.e. primates, mammals, vertebrates) because from a biological perspective, one would expect human 122 
DNA to exhibit higher conservation with rest of primates compared to entire vertebrates. Incorporating 123 
varying conservation levels allow me to gain higher resolution in looking for conserved sequences 124 
between human genomes and rest of vertebrates.	
  125 

The input to the HMM can be visualized as multiple matrices, where each matrix represents a 126 
UCE. The columns correspond to each nucleotide along the DNA sequence, and the rows correspond to 127 
6 different levels of evolutionary conservation. For the training dataset, there is an additional row that 128 
specifies what annotation (i.e. non-UCE, edge, UCE) each nucleotide is assigned to in order to train the 129 
model’s parameters. 130 

 131 
2 . 3       M o d e l  s e t u p  132 

 133 
I construct my HMM to reflect the underlying biological structure of UCEs. Figure 1 below 134 

depicts a graphical representation of the way my model is setup.  135 

 136 
Figure 1. Graphical representation of the HMM. States labeled as N represent non-UCE states, E represent edge 137 
states, and U represent UCE states. The subscript represents the number of states for each type in total (ex. 10 138 
states in total for modeling non-UCE regions). The arrows represent the allowed transition.  State emissions, start 139 
and end states are not shown in the figure. 140 

The non-UCE states model the stretches of nucleotides that correspond to portions of DNA not 141 
part of UCE. I restrict the non-UCE states transition probability between each other to be 1 for 10 142 
consecutive transitions so that a non-UCE region has to be at least 10 nucleotides long. This is to reflect 143 
the biological property that non-UCE regions occur in continuous stretches of nucleotides, not short 144 
broken fragments. The edge states model the regions that correspond to UCE edges. Here I force an 145 
UCE edge to be at least 15 nucleotides or longer by having 15 edge states connecting to each other with 146 
transition probability 1, again to reflect prior biological knowledge of how UCE edges look like based 147 
on prior manual inspection. For UCE states, I force them to model at least 150 nucleotides. Previous 148 
studies [3-4] have used 200 nucleotides as the minimum length threshold, but here I am relaxing the 149 
threshold to accommodate for the lengths taken up by the edges. Some states like E15 and U150 are 150 
allowed self-transitions to capture edges and UCEs longer than 15 and 150 nucleotides respectively. My 151 
model forbids a transition from non-UCE to UCE to ensure edge states must be read before progressing 152 
from a non-UCE region to an UCE region. The start and end states of the model are not labeled, but 153 
essentially any state can be transitioned from the start (with a small arbitrary probability), and any state 154 
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can be transitioned to the end (also with a small arbitrary probability). The start and end states represent 155 
the beginning and end of the input. 156 

The output of my HMM across each UCE sequence is a string of state annotations, with a label 157 
assigned to each nucleotide (among the three possible labels: non-UCE, edge, UCE). The nucleotides 158 
assigned as “edge” correspond to the edges for the UCEs. The assignment is done by looking at the 159 
Viterbi path [7], the state path through the entire input sequence with the highest overall probability. The 160 
path depends on the probabilities assigned to the transition and emission parameters, which are trained 161 
with an expectation maximization (EM) algorithm discussed below.  162 

 163 
2 . 4       T r a i n i n g  t h e  p a r a m e t e r s  w i t h  B a u m - W e l c h  a l g o r i t h m  164 

The Baum-Welch algorithm is an expectation-maximization algorithm used to train the emission 165 
and transition parameters within a HMM [7]. It defines an iterative procedure in which the emission and 166 
transition probabilities in iteration n + 1 are set to the number of times each transition and emission is 167 
expected to be used when analyzing the training sequences with the set of emission and transition 168 
probabilities derived in the previous iteration n. The following section highlights the key points of the 169 
algorithm and how it is applied in this project. 170 

Let Ti, j
n  denote the transition probability for going from state i to state j in iteration n. An 171 

example would be transition from non-UCE state to edge state. I fixed transition probabilities between 172 
the states of the same type (ex. non-UCE to non-UCE, or edge to edge) to be 1, only the transition 173 
probabilities between states of different types are trained with Baum-Welch algorithm. The transition 174 
probability models the likelihood to see a certain evolutionary score based on the state you are at. For 175 
example, transitioning into a UCE state when evolution score is low (i.e. low conservation) is unlikely, 176 
as reflected by the annotations provided in the training set. 177 

Let Ei
n (y)denote the emission probability for emitting letter y in state i in iteration n. In my 178 

project, y is the output prediction assigned to each nucleotide (ex. a non-UCE state assigns a non-UCE 179 
label). For my project, emission probability is trivial because each state only emits 1 possible output. 180 

Let P(X) be the probability of getting sequence X, and xk be the kth letter in input sequence X. 181 
We also define Xk as the sequence of letters from the beginning of sequence X up to sequence position 182 
k, (x1, ...xk). Xk is defined as the sequence of letters from sequence position k + 1 to the end of the 183 
sequence, (xk+1, ...xL), where L is the length of sequence X. 184 

For a given set of training sequences, S, the expectation maximization update for transition 185 

probabilityTi, j
n+1 can then be written asTi, j

n+1 =
ti, j
n (x) / P(X)

X!S
"

ti, j
n (X) / P(X)

X!S
"

j '
"

, where 186 

ti, j
n (x) := f n (Xk, i)Ti, j

n E j
n (Xk+1)b

n (Xk+1, j)
k=1

L

! . The superfix n on the right hand side indicates the 187 

quantities are based on the transition probabilities Ti, j
n  and emission probabilities Ei

n (xk+1) of iteration 188 
n. f(Xk, i): = P(x1, ...xk, s(xk) = i) is the so-called forward probability of the sequence up to and 189 
including sequence position k, requiring that sequence letter xk is read by state i. It is equal to the sum of 190 
probabilities of all state paths that finish in state i at sequence position k. The probability of sequence X, 191 
P(X), is therefore equal to f(XL, End). b(Xk, i): = P(xk+1, ...xL|s(xk) = i) is the so-called backward 192 
probability of the sequence from sequence position k + 1 to the end, given that the letter at sequence 193 
position k, xk, is read by state i. It is equal to the sum of probabilities of all state paths that start in state i 194 
at sequence position k. The forward and backward probabilities fn(Xk, i) and bn(Xk, i) can be calculated 195 
using the forward and backward algorithms [7]. 196 

The expectation maximization update for emission probability Ei
n+1(y)  is carried out with the 197 

same logic as updating transition probability, see [7] for more details. 198 

 199 
3 Results  200 
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 201 
3 . 1  P e r f o r m a n c e  o n  k n o w n  U C E s  202 
 203 

I evaluated my HMM performance on the 381 already-known UCEs left out during training. Prior 204 
studies on these UCEs only have the main body annotated, but the locations of the edges remain uncertain, so I 205 
collaborated with a trained geneticist to compile a training set with edges manually annotated. The 206 
performance is evaluated by sensitivity, defined as the proportion of nucleotides that have their states correctly 207 
assigned. Table 1 below summarizes the performance: 208 

	
   Sensitivity	
  performance	
  on	
  381	
  UCEs	
  at	
  nucleotide	
  level	
  
Non-­‐UCE	
   84.5%	
  
Edge	
   72.1%	
  
UCE	
   95.8%	
  
Overall	
   84.1%	
  

Table 1. Performance evaluation on the known UCEs. Sensitivity is calculated by dividing the number of nucleotides 209 
correctly predicted over the total number of nucleotides belonging to that category. Performance is noticeably worse for 210 
predicting the edges, as expected due to the varying nature inherent in the edges. 211 

 212 
Overall, my HMM yields a welcoming performance above 84%, but this performance is not evenly 213 

distributed among the three states. The HMM is able to find the main UCE body very decently, with over 95% 214 
of the nucleotides correctly assigned. Likewise for the non-UCEs, with over 84% correct predictions. The 215 
lowest performance comes from predicting the edges. This is due to the varying nature of the edges. Generally 216 
the edge is the region where there is a change in conservation profile from low to high (if going from non-UCE 217 
to UCE), and vice versa (if going from UCE to non-UCE). This degree of change, or the slope, is not the same 218 
among edges. Some edges have a sharp slope, which in this report, I will address them as strong edges. Others 219 
have a gentler slope, which I address as medium edges. There are edges, which I address as weak edges, where 220 
the slope is so gentle it is hard even for a trained biologist to determine precisely where the edges are. It is this 221 
third class of edges that is resulting in the most miss-classification (see Table 2 below).  222 

	
  	
   Sensitivity	
  performance	
  on	
  381	
  UCEs	
  for	
  specific	
  edge	
  types	
  	
  
Strong	
  edge	
   89.4%	
  
Medium	
  edge	
   73.4%	
  
Weak	
  edge	
   59.7%	
  
Redundant	
  edges	
   52.4%	
  

Table 2. Performance evaluation based on class-specific edges. The strong edges that exhibit a strong cutoff from non-223 
UCEs in terms of evolutionary profile are most easily identified. Weak edges have evolutionary profiles that are hard to 224 
differentiate from non-UCEs, even by eye. Redundant edges are the most poorly captured among all edge types. 225 
 226 

It is apparent that my misclassification arises mostly from the edges that have a gentle conservation 227 
slope, and hence, can be hard to identify even by eye. There are also some UCEs that have redundant edges, 228 
where two or more edges occur in proximity to each other instead of simply just one on each side. Although 229 
my model does allow the capture of such edges, performance reveals very poor classification on the edges not 230 
directly next to UCEs. This is probably due to lack of such examples in the training set. Increasing the number 231 
of such cases in the training set should improve this performance. 232 
 233 
3 . 2  R e m o v a l  o f  P h y l o P  t r a c k s  b o o s t  p e r f o r m a n c e  234 

 235 
I next see if I can improve the performance by removing some of the evolutionary conservation 236 

profiles. Figure 2 summarizes the effects of removing PhyloP tracks on performance. 237 
 238 

 239 
Figure 2. Performance is increased when PhyloP tracks are removed indpendently of other tracks. The removal is done by 240 
simply not feeding it to the model. The opposite is observed when removing Phastcon tracks (not shown). 241 
 242 
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It is apparent that PhyloP information does not help in classifying UCEs. The tracks only add noise, 243 
which in retrospect is expected because this information is generated by only looking at single-column 244 
conservation, without taking into account of the neighboring nucleotides. I repeated the same experiment with 245 
Phastcon scores, the performance is found to decrease when removing the Phastcon information (results not 246 
shown). This illustrates that in this situation, Phastcon information is much more useful at predicting UCEs 247 
because the scores are generated by taking into account of neighboring nucleotides. 248 

 249 
4 Conclusions 250 
 251 

The function(s) of UCEs remain a mystery; no labs have yet conclusively determined the biological 252 
role(s) of these DNA sequences. There is a theory that UCE edges contain palindromic sequences in order for 253 
DNA to form alternative structure instead of the standard double-helix, resulting in a different DNA folding 254 
that ultimately impact gene regulation. 255 

 256 
4 . 1      S i g n i f i c a n c e  257 

 258 
Identifying where these edges are serves as the basis for testing such theory. In this paper, I applied 259 

HMM to classify locations of UCEs and their edges. Trained on evolutionary conservation profiles, the 260 
algorithm yields decent performance and is able to recapture over 72% of the known nucleotides identified as 261 
UCE edges. This result is significant to those working in the genetics field. My study differs from previous 262 
attempts at finding UCEs by incorporating evolutionary conservation profiles across all vertebrate species. My 263 
HMM is also able to locate edge regions that previous methods fail to address. One bioinformatics downstream 264 
analysis is to analyze the nucleotide composition of those edges, and see if they indeed contain palindromic 265 
sequences that are over-represented compared to other parts of the genome. Also, it will be interesting to 266 
explore other nucleotide compositions within these edges, such as dinucleotides AA/TT, which is often 267 
associated to rigidity in DNA structure. Additionally, researchers can also apply my model across the whole 268 
human genome and identify potentially novel UCEs.  269 

 270 
4 .2 	
   	
   	
   	
   	
   Improvements 	
  271 
 272 

There remains several improvements to boost the HMM. As previously discussed, the results show 273 
that most of the misclassification is due to diverse edge properties, where some UCEs exhibit a strong 274 
differentiation between UCE and its edge, while others are less obvious. Further improvements can be made to 275 
address this issue by expanding two new group of edge states, so there are three sets of edge states in total. 276 
This essentially will model the UCE edges as three separate classes: one that is a weak edge, a medium edge, 277 
and a strong edge. Changing the arbitrary lengths defined in the model (ex. edge length from 15 to 13) may 278 
also improve the performance. Furthermore, in this study, I only used evolutionary profiles as training and 279 
testing, but there are many other features to feed into the model as well. For example, UCE edges are 280 
previously known to be enriched in adenine and thymine, incorporating such property into my classifier can 281 
boost the performance. Additionally, other features such as the information of whether a nucleotide is located 282 
within a protein-coding region, or whether the nucleotide is known to be epigenetically modified, can also be 283 
included to further differentiate UCEs and their edges from non-UCEs. Lastly, some UCEs exhibit redundant 284 
edges where an edge is followed by another edge. My HMM currently does poorly in predicting the latter 285 
edges because my training data lacks such example. Increasing the size of my training set, combined with the 286 
novel features mentioned above, should better capture this type of edge. 287 

 288 
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