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Abstract

In this project I am attempting to predict meteotsunamis - long ocean waves caused
by rapidly changing atmospheric pressure. Meteotsunamis have very similar prop-
erties to famous and dangerous tsunamis, but there is much less research going on
them: no one tried to use a large dataset (covering a few years of sea observa-
tions at a specific location) to train some supervised-learning algorithm on it. I
applied Recurrent Neural Network (RNN) to such a dataset and somewhat suc-
ceeded in predicting a meteotsunami given the atmospheric pressure at the pre-
vious timesteps. However, the model built by RNN turned out not to be very
accurate.

1 Introduction

In this paper I am dealing with so-called meteotsunamis. In short, meteotsunami is an ocean wave
which has very similar properties to a tsunami wave, but is caused by atmoshperic pressure change
as opposed to the movement of the ocean floor. Below I am going to describe all these terms in more
detail.

1.1 Tsunami

A tsunami is an ocean wave, which differs from an ordinary wind wave in that it has a very long
length and period. Essentially, a tsunami can be thought of as a very fast tide.

Figure 1: Tsunami formed by the ocean floor displacement. (From [4]).

Tsunamis are usually formed by movement of the ocean floor (earthquakes, volcanos etc. - see
Figure 1) - when it moves even a little bit, the whole mass of ocean water starts to adjust to it,
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causing a wave. Such a wave may not look very high and dangerous initially, but it carries an
enormous amount of water mass which is much larger than the mass carried by a regular wind wave
of the same height (because a tsunami is a long wave).

That said, some tsunamis have a very small height (a few centimeters), and thus are not noticeable
by people living on the coast. However, if a tsunami has a height of more than a meter, it can cause
great damage to the shore. No surprise then that all those colossal walls of water of height more
than 10m, which people usually associate the term ”tsunami” with, literally devastate the coastline
(Figure 2).

Figure 2: Possible consequences of an earthquake. (From [6]).

1.2 Meteotsunami

A meteotsunami is a wave with the same properties as a tsunami (i.e. long period and large wave-
length), but which is formed in a different way. As follows from its name, a meteotsunami has
an atmospheric origin - in this case, the role of moving ocean floor is played by rapidly changing
atmospheric pressure - e.g. which happens when a storm front is passing by (Figure 3).

Figure 3: A meteotsunami is being formed by a passing storm front. (From [3]).

You might wonder why meteotsunamis are not that well known given how many storms are going
around. The catch here is that the change in atmospheric pressure has much less of an impact on
the ocean than an earthquake or a volcano. Thus, generally, meteotsunamis are not as dangerous as
tsunamis (which draws less attention to them), and several conditions need to be satisfied for them
to be formed [2]:

• There should occur a meteorological event causing a rapid change of atmospreheric pres-
sure above the sea

• The speed of this event should match the speed of waves currently present at deep water
(causing resonance)

• The harbor should have a shape that amplifies the long wave coming to it

The first two conditions imply that meteotsunamis are quite rare, while the third one adds that
meteotsunamis should occur mostly at some specific georgaphic locations. And, indeed, a meteot-
sunami is a relatively well-known phenomenon in Spain’s Balearic Islands (there it is called rissaga),
Japan (with a local name abiki), and other Mediterranean countries like Malta or Croatia.
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It should be mentioned that although most of meteotsunamis are small and not dangerous, sometimes
they can be as tall as 4 meters [2], in which case they are hard to overlook (Figure 4).

Figure 4: ”Rissaga” at Menorca Island (Spain) on June 15th, 2006. The damage was estimated to
be about 30 million euros. (From [2]).

2 Problem Description

While there is a tremendous amound of research going on about predicting and analyzing tsunami
waves, meteotsumamis get much less attention (apparently, it happens because meteotsunamis are
localized and less dangerous, and thus researchers mostly focus on much more destructive and global
tsunamis). You will also not be very surprised to learn that main research on meteotsunamis is going
at the places where it poses a real threat - like Balearic Islands and Croatia.

The main problem related to any kind of long waves that researchers solve is, of course, alerting the
coast that a (meteo)tsunami is coming. The earlier the alert comes, the better chances people have
to save their lives and properties before the wave arrives. This makes the prediction of these waves
a crucial task.

As we all know, the level of science novadays does not allow us to predict catastrophic events like
earthquakes (and, hence we cannot predict a tsunami following it either). However, meteotsunamis
have an atmospheric origin, and thus there is a possibility that we can predict them given the data
about atmospheric pressure nearby. It should be noted here that, although there exist lots of models
explaining how meteotsunamis appear, no research tried to use large empirical data (covering a few
years of observations) to predict meteotsunamis so far.

So, in this project I am trying to apply a supervised learning algorithm to the empirical data about
the atmospheric pressure and sea level in an attempt to predict the occurence of a meteotsunami.

3 Data

As was mentioned above, in this project I am trying to predict meteotsunami given the atmospheric
pressure data. So, what could we use as an output for our algorithm? How can we ”measure” a
meteotsunami? A standard way to measure long waves is by measuring variance of the sea level
averaged over time. Indeed, variance in this case describes the deviation of the sea level from normal
(over time), which intuitively seems to be a good indicator of how ”wavy” our ocean is. Note, that
we average over a large time period (an hour) in order to capture long waves.

So, in short, the output data is the variance of the sea level averaged over one hour. I used measure-
ments of a specific detector at Vancouver Island’s coast for 3 years (2007-2009), which yields over
20000 output data samples after averaging (each sample is just a single real number). This data is
available online at [7].
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It should be noted that around Vancouver Island only 3 meteotsunamis were detected in 2007-2009
- one in each of the years [5], and our output data nicely reflect that - there is a clear spike in the
graph corresponding to a meteotsunami happened (Figure 5), which will be later referred to as a
”meteotsunami spike”.

Figure 5: The plot of the output data for the year 2009 versus time - the largest spike corresponds
to a meteotsunami happened in the fall of 2009. Noteworthy, almost nobody saw this and other
meteotsunamis at Vancouver Island - they are noticeable only at some very specific areas. Those
who did see it, though, were quite impressed - for instance in 2008 a fisherman (who was the only
human being at that location at that moment) said that he never imagined the ocean behaving like
this [5].

What about our input data? In this case we can use measurements of a barometer located nearby
(more precisely, near Deep Cove Elementary School) for the same time period (2007-2009). In
the same manner as with our output data, we average these barometer measurements over one-hour
period, thus getting the indication of how fluctuating atmospheric pressure was at that moment. The
data is available online at [8].

It is worth mentioning that even a few years ago such data from British Columbia coast would
not have been available (barometers did not give us minute-by-minute measurements), making this
project impossible to accomplish (at least on data from BC). But professor Andrew Weaver initiated
the project which can be described as ”give a barometer to every elementary school” [8], and made
the measurements done by those new barometers publicly available. Thus, in a sense, elementary
schools move the ocean science forward in British Columbia.

Getting back to my project, here I can reiterate that the data I used for it is two real-valued temporal
series (from 2007 to 2009): input (atmospheric pressure variance) and output (sea level variance at
the next timestep). The problem of predicting a meteotsunami in this case reduces to fitting this data
by applying some supervised learning algorithm to it.

It should also be clarified here that using the next timestep for the output relative to the input is
necessary for ensuring that no model has access to the atmospheric pressure measurements while
trying to predict the sea level for the same timestep (otherwise, it would not really be a prediction).

4 Algorithm - Recurrent Neural Network

Although at the first look the problem may seem to be extremely simple - one input, one output - the
catch here is that the sea level variance (output) depends not only on the corresponding atmospheric
pressure at the previous timestep (input), but also on the atmospheric pressure and sea level from the
earlier timesteps.

Therefore, if we want to predict a meteotsunami as accurate as the data allows, we might want to
use the algorithm which can potentially capture these temporal dependencies. Note, that the most
popular supervised learning algorithms like linear regression do not seem to be promising as they
do not take the temporal component (i.e. order) into account.

One of the algorithms that take the temporal component into account is so-called Recurrent Neu-
ral Network (RNN). RNN differs from a classic feed-forward Neural Network (FFNN) in that it
has connections from hidden units to themselves (Figure 6). This architecture allows the output
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to depend on the dynamics of the network at previous timesteps through these hidden-to-hidden
connections.

Figure 6: A typical architecture of Recurrent Neural Network (RNN). Here RNN is depicted as
series of feed-forward neural networks, with hidden units at a given timestep connected to hidden
units at the next timestep. (From [1]).

Previously RNN were not widely used for solving problems with temporal dependencies, because
they are very hard to train with standard algorithms like backpropagation. However, recently
Martens and Sutskever (2010) applied a method called ”Hessian-Free optimization”(HF) to train
RNN, and showed that in combination with powerful GPU units it allows to train RNN much faster
and better (allowing it to capture much more complex temporal dependencies than before) [1].

I modified their code available online to make it work for my particular dataset. I used RNN with
50 hidden units with tanh activation function, 1 input unit and 1 output unit (with identity activation
function). I used default parameters (provided by Ilya Sutskever’s code) for the initialization of
weights and for HF training algorithm, since he found them to work moderately well on all datasets
he tested [1].

I used the first 2/3 of the data available (roughly years 2007-2008) as training data - it was stan-
dardized and divided onto 100 possibly overlapping sequences of 100 timesteps each starting from
a random point in time. The RNN was then trained on these so-called minibatches. The rest of the
original data (roughly the year 2009) was used for testing the results.

Note, that I also used basic linear regression algorithm for comparing its performance to RNN and
validating that the recurrent neural network can do a better job.

5 Summary of Results

Figure 7: Top: the plot of the output data for the year 2009 versus time - the largest spike corresponds
to a meteotsunami happened in the fall of 2009. Bottom: the plot of the predicted output for the year
2009 versus time - note, that although the prediction is quite bad overall, RNN is somewhat able to
track the meteotsunami spike.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

After training the model, I found that it was able to predict the meteotsunami spike exactly at the
right time on the test dataset (Figure 7). However, note that the predicted spike on the graph is not
as prominent compared to the actual output - RNN was not able to fit the rest of the output.

Also, not surprisingly, the linear regression model was unable to predict the meteotsunami happen-
ing.

Unfortunately because of the time constraints of the project (and also since I did not have any Linux
machine with GPU available for running the code), I was unable to try all the different parameters
(e.g. number of hidden units used) and see how the network performs.

6 Conclusions and Discussion

In this project I was able to train RNN to predict sea level variance spike corresponding to a me-
teotsunami happened at Vancouver Island in the fall of 2009, given atmospheric pressure and its
dynamics at previous timesteps.

Although this might seem to be a positive result, the problem is that RNN was completely unable to
fit the data overall, showing that its representation of the problem is not very accurate - and thus it is
likely to fail on a different dataset (in this project I was literally predicting a single meteotsunami).
In addition, I did not compare the performance of RNN to the performance of other advanced al-
gorithms like Gaussian Processes for temporal series - maybe they would do a much better job at
capturing temporal dependencies in the data.

It can be the case that playing with parameters of RNN could be beneficial, as well as adding
to the network connections from the output units back to the hidden units. It may be that these
modifications will improve the results.

However, it may also be that problems with fitting the data are related not to the algorithm applied,
but to the data itself. I used atmospheric pressure measurements only at one location - it is quite
possible that using the measurements from several nearby locations could improve the performance
of the RNN dramatically.

Finally, I want to point out that even if RNN will not be proven to be efficient for solving the problem
of a meteotsunami prediction, this network seems to be suitable for at least initial analysis of such
problems with temporal dependencies. RNN is relatively simple, easily customizable for any type
of input-output data, quite powerful and fast (with the availability of GPUs and a good training
algorithm like HF optimization).

I believe that these properties make RNN a perfect candidate for a generic black-box algorithm
that a researcher might want to apply to a new dataset to understand its dependencies better, before
choosing the best model available.
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