
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Feature Selection for the Binary Classification of
Severe-Sickness Experience in HIV-Exposed but

Uninfected Infants Involving Multivariate
Longitudinal Dataset

Anonymous Author(s)
Affiliation
Address
email

Abstract

This project was aimed at developing a procedure for inferring the combined ef-
fects of a set of input variables relating to a binary response (severe-sickness expe-
rience). Typically data analysis on similar multivariate longitudinal data considers
the multiple responses separately when determining correlation to a class, for ex-
ample inferring the difference in mean measurement of a variable for two classes.
The devised procedure involved constructing a classification model with the avail-
able data. Features were first selected with linear SVM weights using different
splits of inputs. Selected features were then recombined for further filtering. The
final selected subset of features was able to predict the class of severe-sickness
experience with 85% classification accuracy when using k-Nearest Neighbor al-
gorithm.

1 Motivation

The group of HIV-exposed but uninfected infants (HEU) has been the center of HIV research studies
in recent years. The interest lays particularly in the health of HEU compared with infants born
to healthy parents (un-exposed, hereby referred to as UE). Several studies have observed higher
morbidity rate [7], higher chance of contracting serious illness and infections for the HEU [12] [1].
These studies suggested evidence that HEU infants differ from UE infants in that they are more
likely to become severely sick. Based on this evidence, further research efforts had been spent to
uncover the cause for a weaker immune system in HEU, in order to understand the disease and to
perform preventative measures to increase survival rate of HEU infants.

Research in this direction however, is restricted to observational studies since experimenting on the
human immune system is either difficult or limited due to ethical concerns. However, observational
studies are generally less powerful for making inferences, because the monitored responses may or
may not be correlated with the outcome of interest, in this context, whether a child contracts severe
sickness or does not.

Many efforts had been made to understand the immune system of HEU. While the majority of these
studies kept track of a multitude of response variables, for example various anti-body responses
[5], the thymic size and T-cell, B-cell levels [6], the type and frequency of diseases [9], data anal-
ysis were performed on individual responses independent of one another. But because longitudinal
immunology studies take a long time and are costly, it is also important to examine the effect of
immune parameters in conjunction in order to harvest the most information out of observational
studies. The following sections of this paper will describe a procedure for identifying a subset of
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immune parameters most correlated to the outcome whether a child becomes severely sick when
used in combination as inputs to a classification model.

2 Data Description

The data came from a pilot study conducted by the Kollmann Lab at the Child and Family Research
Institute in Vancouver. Measurements of immune parameters were taken from two groups of infants,
experimental (HEU) and control (UE) groups over a course of 2 years. The original data included 28
HEU, 30 UE, and 4 HIV subjects for a total of 62. The scope of this project is limited to 2 types of
data: haematology measurements and cytokine levels measured via flow cytometry on monocytes,
mPC, pDC cells, and the intercellular fluid. A total of 74 different measurements were taken for a
single time period for each subject.

3 Goal and Challenges

The goal of this project was to reduce the set of 74 measured variables into a small subset most
correlated with severe-illness experience, in other words, to perform feature selection. A binary
classification model was constructed to model correlation to a binary target (0,1) with 1 indicating
that subject experienced severe-illness. Apart from the small sample-size relative to the number
of parameters measured, there were other challenges presented by this dataset. Following sections
adress the challenges of missing data, and of modeling inter-correlated, multivariate longitudinal
data.

3.1 Correlated Inputs

The data was transformed to orthogonal directions using principle component analysis (PCA), which
addresses the problem of highly correlated inputs, as described in the book “The Elements of Statis-
tical Learning” [3].

3.2 Missing Data

This data set contained a high percentage of missing data (see Figure 1). Case-wise deletion, mean
imputation, MLP imputation, Maximum Likelihood with EM are amongst some of the ways to
treat missing data [2]. Being the simplest solution, case-wise deletion had been proven to yield
the poorest classification result [10] and introduce bias [4]. Due to the small number of subjects
in this study, further reduction in available data was to be avoided. Performance of Expectation
Maximization (EM) algorithm was very often amongst the top of the available choices [2] [10]. In
this application correlation between inputs could not be ruled out, therefore missing entries were
imputed via EM algorithm for PCA [11], by which the covariance structure of the data would be
preserved. Imputation via PCA with EM allowed 34 more subjects (cases) to enter the analysis.

3.3 Longitudinal Multivariate Data Modeling

Classifying longitudinal multivariate data is no trivial task by means of rigorous statistical methods.
Part of the difficulty is a result of the lack of literature on classification model for longitudinal
multivariate data. Verbeke suggested for this particular purpose a heterogeneity model (mixture
model) based on linear mixed effects model [13]. These linear mixed effects models involve an
estimated variance-covariance structure. Estimation could be achieved through EM [13], or first
order Taylor-Approximation. [8]. In this project, linear models were constructed with PCA adjusted
inputs for the purpose of bypassing the need of the covariance matrix.

4 Experimental setup

In preliminary data processing, missing values were first imputed via EM with PCA. For each avail-
able case, the slopes and means of measurements were the input features chosen to represent the
linear model of longitudinal profile. The correlation between every possible pair of variables was
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Figure 1: Figure showing the high percentage of missing data in the original data set. Each subject
was measured at 4 time periods producing 4 entries per subject for a total of 248 entries.

Figure 2: Significant improvement in the number of subjects with complete records for all four time
periods (complete cases) was observed after data imputation. Data imputation was not performed
on rows that were missing completely.

also calculated using the Pearson product-moment correlation coefficient. Table 2 summarizes the
number of input pairs above certain correlation levels. Note that there were 2,701 possible pairings
out of 74 input variables.

SVM, Nave Bayes, Random Forest, K-Nearest Neighbors, and Logistic Regression algorithms were
compared and used as guidelines for feature selection. The algorithms were implemented with de-
fault parameters using the data-mining package Orange. Feature-selection was automated through
the preprocess module in Orange based on linear SVM weights. Performance indicators (classifi-
cation accuracy, area under the ROC curve, Brier score) of the various algorithms were evaluated
through 50 fold cross validation.

For comparison purposes, both PCA treated data and original data were used. The slopes and means
were also considered in isolation to see if either set was more important for predicting severe-illness
experience. Performance indicator values from all algorithms were averaged, to produce a single
measure representing the classification ability of the 3 splits (all features, slopes only and means
only) of inputs. Upon running the classification algorithms with the 3 splits of inputs, features
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Table 1: Amount of correlation within input variables represented by the number of input pairs
above certain correlation levels

Correlation above # Input pairs

0.5 60 pairs
0.6 44 pairs
0.7 17 pairs
0.8 4 pairs
0.9 2 pairs

Table 2: Classification accuracy averaged across all machine learning algorithms. Results shown
for several splits of input variables and two possible treatments (PCA and feature selection) for each
split. Feature selection using linear SVM weights provided improved accuracy for all splits of inputs

with PCA Original Data
Feature Selection No Feature Selection Feature Selection No Feature Selection

All Inputs 0.653 0.548 0.632 0.575
Slopes Only 0.665 0.558 0.636 0.580
Means Only 0.631 0.593 0.626 0.573

With 2nd Stage Feature Selection: 0.686 N/A

auto-selected by the data-mining package were manually filtered and combined to form a new s of
input features. Classification was again repeated for this new subset of manually selected features
with further feature selection via linear SVM weights. The performance of all machine learning
algorithms were evaluated against varying number of features (from 1 to 22) selected from this
same subset.

5 Results and Discussion

Table 1 provides a summary of the amount of correlation between input data. Table 2, Figure 3 and
Figure 4 summarizes classification performance of the various machine learning algorithms. As
seen in Table 2, PCA adjusted inputs showed only a slight improvement compared to the original
inputs. Further experimentation would be required to determine the statistical significance of this
slight difference. This was most likely due the majority of inputs being weakly correlated. Generally,
Pearsons product-moment correlation coefficient must be greater than 0.7 to be considered strongly
correlated. Only 17 pairs of inputs demonstrated correlation above this threshold out a total of 2,701
pairs (less than 1%).

Most classifying algorithms investigated in this project showed the trend of performing better ini-
tially as features are increased, but again decreased in performance when too many features were
added. See Figure 3. The K-Nearest-Neighbor algorithm in particular was most affected by the
addition of unimportant features. Nave Bayes and Random Forest seemed less affected by addition
of inputs, but further investigation would be required to infer this behavior in general. Note that
other performance indicators, namely area under the ROC curve and Brier score, showed a similar
pattern. See Figure 4.

A big improvement in performance was observed for using a subset of inputs as filtered by linear
SVM weights. See Table 2. Even better classification results, as high as 85% accuracy when us-
ing K-Nearest-Neighbor, were obtained when selected features from the different input splits were
further filtered. See Figure 3. While exhaustive search for the best subset would be unrealistic,
multi-stage filtering and recombination seemed to produce good results even when only two filter
stages were used as with this project. However, the number of subjects in this study (n = 62) was
quite small. Further experimentation with large sample data would be required to provide stronger
evidence. Future work would also include investigating filtering inputs from random splits of various
sizes at each stage, and experimenting with the number of stages required to find a best result.
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Figure 3: Classification accuracy of various machine learning algorithms using the manually se-
lected feature subset. As the number of features increased initially, all algorithms showed improve-
ment in performance. Note the drastic decrease for K-Nearest-Neighbor, from 0.85 to 0.44, between
11 to 22 features.

Figure 4: Average performance of all machine learning algorithms used in this project. Perfor-
mance was measured in terms of classification accuracy (CA), area under the ROC curve (AUC),
and Brier score. Note that high values CA and AUC indicate better performance, while low Brier
score indicates better performance. The performance of algorithms increased initially with addition
of features, but later decreased when too many features were in the active set.
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6 Conclusion

Feature selection was defined as the ultimate goal for applying machine learning methods to this
particular observational study as another way to extract information from multivariate longitudi-
nal data. This study successfully extracted a subset of features, when considered in conjunction,
provided high classification rate of target binary variable, namely severe-sickness experience. Clas-
sification without any feature selection was only slightly better than random. With feature selection,
the classification accuracy increased above 60%. The procedure of 2-stage filtering used in this
project showed as high as 85% accuracy with the K-Nearest-Neighbor algorithm. Other similar
studies in biology often also produce data with very high dimensions. Performing an exhaustive
search for the best subset would be very time consuming if not unrealistic. As an extension of the
procedure followed in this project, further research would focus on developing a search procedure
with multi-stage feature selection with random recombination of features as a favored alternative for
obtaining the best feature subset compared with an exhaustive search method.

References
[1] C. Epalza, T. Goetghebuer, M. Hainaut, F. Prayez, P. Barlow, A. Dediste, A. Marchant, and J. Levy. High

Incidence of Invasive Group B Streptococcal Infections in HIV-Exposed Uninfected Infants. Pediatrics,
126(3):e631–e638, 2010.
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