
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Transforming Auto-encoders

Anonymous Author(s)
Affiliation
Address
email

Abstract

In recent years, the demand and possible applications for good computer vision
algorithms has been staggering. However, we still lack robust systems that can
recognize general objects regardless of pose and lighting conditions. This year, a
deterministic neural network model was introduced that is not only capable of rec-
ognizing features in different poses and lighting, but is also capable of outputing
pose-specific variables to be used by higher visual layers rather than discarding
them [1]. This paper will provide some motivation for the model, describe it in
detail, and introduce ideas for extensions to the model.

1 Introduction

Recent advances in the cognitive sciences [2] and in computer vision [3] have shown the importance
of invariant representations in vision and other cognitive tasks. Indeed, humans are capable of very
quickly recognizing features regardless of position, orientation, scale, and lighting conditions. This
fact suggests that we have invariant representations of such features or objects. Moreover, with the
configuration information that we obtain visually, our brains are capable of infering larger features,
e.g. seeing two eyes and a nose in the correct relative configuration allows us to infer the existence
(and relative position, orientation, etc.) of a mouth, even though the mouth may be hidden.

It has become clear that if a machine is to perform a similar task in a robust way, its vision algo-
rithm must meet some key requirements: locality, invariance, and hierarchy. Such a system must be
capable of recognizing local features (one of the reasons for the success of the SIFT algorithm [3]).
Meanwhile, it must represent them in an invariant way that is independent of the configuration of
the particular instance of the feature. Indeed, we shall henceforth think of the presence of a feature
and its configuration in a particular instance as two separate notions. Concerning configuration pa-
rameters, an artificial visual system should have an implicitly defined prototype of a feature against
which it can compare particular instances of said feature to generate transformation variables. These
variables are called instantiation parameters and can range from affine transformation parameters to
lighting conditions. Finally, the algorithm must have a hierarchical architecture in order to capture
the intrinsic part-whole structure of the objects it attempts to recognize. In our previous example,
our brains were capable of infering the existence of the mouth because they have been trained to
know that a pair of eyes and a nose are usually seen with a mouth as part of a face (whole). The neu-
ron responsible for firing when a face is in our visual scene, weights its inputs in favour of features
such as eyes, nose, and mouth. Such hierarchical structure is believed to be an essential ingredient
to our intelligence [4].

Recognizing a whole from its parts is as much an exercise in establishing the presence of features as
it is quantifying relative distances and orientations of said features. Indeed, if we saw a pair of eyes
and an upside down nose under it, even our advanced brains would be less certain of the existence of
a mouth, since the relative orientations no longer match our trained expectation. Therefore, it is im-
portant that lower-level feature recognizers relay both the features present and their corresponding
instantiation parameters to higher-level recognizers. While the feature presence should be an in-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

hp

+dh

r
c=1:C

y

x

g

Figure 1: Training the transforming auto-encoder.

variant quantity, independent of transformation, the instantiation parameters should be equivariant,
meaning they should change with the transformation of the feature in each instance.

Based on these ideas, Hinton et al. have proposed a model [1] which is the subject of this paper. We
will start by giving a detailed description of the model in Section 2. In Section 3, we discuss techincal
considerations and difficulties that can arise, e.g. activation functions, parameter initialization, etc.
Finally, we discuss the merits and limitations of the model, as well as suggest possible future work.

2 Model description

The model proposed by Hinton et al. assumes the existence of a higher-level recognition unit that
takes as input the presence and instantiation parameters of all features to recognize the presence of
high-level features. Also, for simplicity, we will assume that we are only interested in the location
of the features – extension to more complicated transformations is straightforward. Therefore, we
are henceforth only concerned with detecting features and their position on the image.

The model is composed of C elements called capsules. As a “black box”, each capsule is trained
to take an input image x, recognize a single feature, and return its probability p of being present in
the image, and position vector h in some implicit coordinate system. The value of h is not what is
important here, so we never need to know the coordinate system in which each capsule measures
h. Recall that h can be any other equivariant quantity we wish to measure: orientation, scale,
brightness, etc. We will refer to units belonging to a specific capsule with a subscript c, as in hc.
However, we will omit the subscript when it is superfluous.

Considering our earlier requirements for a good computer vision system, these capsules seem like
ideal building blocks. Each capsule’s pc acts as an invariant identifier, while each hc acts as an
equivariant quantifier of transformation.

2.1 Capsule feed-forward

In order to understand how a capsule learns, it is useful to consider a single capsule’s feed-forward
operation. Figure 1 will help follow the inner workings of a capsule described below.

When capsule c receives an input x, it first computes a dimensionally reduced representation, rc, and
from it, computes the desired quantities pc and hc. The hidden units, hc, can then be used to compute

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

a set of generation units, gc, which are in turn used to compute a capsule-specific reconstruction,
yc (not depicted in Figure 1). All the yc are then modulated by the corresponding pc and summed
to produce a network reconstruction, y. (Note that x and y are deliberately not subscripted because
they are the entire network’s input and output.)

In principle, when the capsules are fully trained, performing, h′c = hc +∆h, ∀c, before the capsule-
specific reconstruction (as shown in Figure 1) should shift the entire input image x by ∆h, since all
features are shifted by that amount. With this particular idea in mind, let us now consider the task of
training the entire network.

2.2 Training the network

All the capsules are trained together as a network. Recall that we have restricted our attention to h
representing a 2D position, but an extension to orientation, lighting conditions, or other transforma-
tions is straightforward.

The idea is to pick an x and a translation ∆h, resulting in a shifted image x′. The network is then
given x and ∆h as inputs and returns an output y as described above. The reconstruction, y, will
be compared to x′ in some cost function, J(y, x′|θ), where θ represents all the parameters in the
network.

Therefore, training this neural network is no different from a generic neural network; it consists
of feeding forward, computing gradients by back-propagation, and updating by stochastic gradient
descent, as outlined in Algorithm 1.

Algorithm 1 Training a transforming auto-encoder, using back-propagation and stochastic gradient
descent.

for mini-batch in training data do
for all capsule do

Compute presence pc and instantiation hc
Transform hc
Compute capsule-specific transformed reconstruction yc and other activations
return All activations

end for
Compute transformed reconstruction:

∑
c pcyc

Compute true transformed batch
for all capsule do

Compute gradients evaluated at activations and current weights given reconstructed and
true batch
Average gradients over mini-batch
Update weights

end for
end for

2.3 Activation functions

Finally, we provide a more explicit description of the model, with expressions for the various acti-
vations involved. They are provided in feed-forward order.

rc = σ
(
xW c

rep + bcrep

)
(1)

pc = σ (rcW
c
act + bcact) (2)

hc = rcW
c
trans + bctrans (3)

h′c = hc + ∆h (4)

gc = σ
(
h′cW

c
gen + bcgen

)
(5)

yc = σ (gcW
c
out + bcout) (6)

J(y, x′|θ) =

∣∣∣∣∣
∣∣∣∣∣∑

c

pcyc − x′
∣∣∣∣∣
∣∣∣∣∣
2

(7)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

where σ(·) is an activation function. The units rc, pc, . . . are called activations because they are
activated by the units of the previous layer.

The cost function will be minimized when hc corresponds to the position of the feature that capsule c
is responsible for recognizing. Therefore, if the weights are made to follow a gradient descent, they
should converge to the weights that will provide the desired hc. Notice that since hc is to represent a
real valued scalar (not an activation or probability), it is obtained by a linear regression alone. There
is still some freedom in the choice of σ, however, the most popular being the sigmoid, tanh, and
softsign functions [5].

3 Technical Considerations

Though the model is simple to understand and implement, when training the network, one encoun-
ters a few degrees of freedom, that are not addressed in Hinton, Kryzkevsky, and Wang’s paper [1].
As we will see these choices can have dramatic effects on training.

3.1 Activation functions revisited

One choice we have, that was already mentioned, is the activation function. Possibly the simplest
and most commonly used is the sigmoid activation function. However, without pre-training, we have
no choice but to randomly initialize the weights. In this setting, the sigmoid is known to slow down
learning in deep networks [6]. This effect is due to the saturation of activations, and indeed we have
observed this phenomenon in our experiments. The hyperbolic tangent and softsign (σ(x) = x

1+|x|)
activation functions suffer a similar fate. In experiments conducted by Bengio et al. tanh activations
would saturate one layer at a time, in feed-forward order, while the same experiment with softsign
activations yielded a gradual saturation of all layers in unison.

3.2 Normalized random initialization

Bengio et al. also studied the effect of initialization on activations and gradients. They showed
that, using a previous heuristic random initialization, the activations and back-propagated gradients
would undesireably approach zero for deeper layers.

In constraining the variance of the gradients, they have established a new so-called normalized
initialization [6] as follows:

W ∼ U

[
−

√
6

nl1 + nl2
,

√
6

nl1 + nl2

]
(8)

where U [a, b] represents a uniform distribution in the interval [a, b], and nl1 , nl2 correspond to the
number of rows and columns of W , respectively.

Indeed, with this new initialization and the hyperbolic tangent activation function, Bengio et al.
showed that the activations and back-propagated gradients have the same distribution across all
layers.

4 Discussion and Future work

The model’s capacity to produce invariant representations as well as equivariant instantiation param-
eters is a considerable advantage over other computer vision algorithms. We suspect that extracting
information on the pose of particular instances of features will be instrumental in building the next
generation of vision systems.

On the topic of extracting pose information, it is worth mentioning similar work by Hinton and
Memisevic. Using a probabilistic higher-order factored Restricted Boltzmann Machines (RBM)
they learned filters that encode transformations (translations, rotations, scaling, and even random
kernel transformations) [7]. However, their paper only mentions transforming entire images and
needs to be extended to feature-based transformations, for a proper comparison to the deterministic
model described in the present paper.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Nevertheless, one idea from the Memisevic paper is worth attempting with the transforming auto-
encoder model. The idea is to use randomly generated images to train the auto-encoder. If this
works, the capsules would be trained to recognize general features that are not due to a particular data
set. However, we remain skeptical that this would work. In any case, in principle this would require
many more capsules with many more representation and generation units to handle the increased
domain of possible features, which could render training prohibitively slow.

On the other hand, the idea of transfer learning is a task that can be readily tried given a working
auto-encoder model, and we believe this experiment has a high probability of success. For instance,
the transforming auto-encoder could be trained to detect features and their positions on MNIST.
(MNIST is a famous data set of handwritten digits 0 to 9.) Those same capsules can then be given
a handwritten character to recognize. The domain of features should be very similar for both hand-
written digits and characters, so this task should be relatively easy for the auto-encode.

Furthermore, one could try analogy learning, which is also demonstrated in [7]. For this exeperi-
ment, the MNIST-trained auto-encoder would be given a handwritten digit and its translated version,
recording the shifts in position for each capsule. Then, a handwritten character can be fed to the
auto-encoder with the recorded shifts; the output should be the same character shifted in the same
way the digit was. As with transfer learning, we are optimistic that this very simple extension would
succeed.

Finally, transforming auto-encoders have potential application in video compressing, and semantic
hashing. Indeed, if one were able to extract information on how features transform in a sequence
of images, in principle, one could compress video by eliminating redundant frames. Similarly, one
could extract spatio-temporal features that carry more meaning for semantic hashing. For instance,
if one feature is ‘dog’ and another is ‘cat’, having information on how they transform from frame
to frame can help categorize the video as either ‘dog chasing cat’ or ‘dog and cat cuddling’. More-
over, if this can be done quickly, with streaming data in real-time, then there are straightforward
applications to MicroSoft’s Kinect and other such gaming devices.

Acknowledgements

Thanks to Misha and Mareija for help, support, and proofreading.

References

[1] G. E. Hinton & A. Krizhevsky & S. D. Wang. Transforming Auto-encoders, 2011.
[2] R. Quian Quiroga & L. Reddy & G. Kreiman & C. Koch & I. Fried. Invariant visual represen-

tation by single neurons in the human brain, 2005.
[3] D. G. Lowe. Object recognition from local scale-invariant features, 1999.
[4] J. Hawkins & S. Blakeslee. On Intelligence: How a New Understanding of the Brain will Lead

to the Creation of Truly Intelligent Machines, 2004.
[5] J. Bergstra & G. Desjardins & P. Lamblin & Y. Bengio. Quadratic polynomials learn better

image features, 2009.
[6] X. Glorot & Y. Bengio. Understanding the difficulty of training deep feedforward neural net-

works, 2010.
[7] R. Memisevic & G. E. Hinton. Learning to represent spatial transformations with factored

higher-order Boltzmann machines, 2010.

5

