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Abstract

We apply the Gaussian Process Latent Variable Model (GPLVM) to tackle the
inverse kinematic problem in character animation during a ball catching scenario.
The goal is to generate realistic upper-body movements with only the tip of the
hand specified as the constraint. We ran a series of motion capture experiments to
capture the body movement in a subject as he performs a ball catching task and
then learn a scaled GPLVM. The ball catching scenario allows us to test the use of
GPLVM to represent non-cyclic set of movements with plenty of style variation.

1 Introduction

Inverse kinematics (IK) is a very common task encountered in the field of computer animation and
robotics. Its goal is to generate a solution for the degree-of-freedoms (e.g. joint angles) given a
small set of constraints, such as the location of the end effector. This is almost always an under-
determined problem; although it is trivial to find a solution, finding a good solution is an ongoing
research topic [1, 2, 3, 4]. Specifically in character animation, we want to obtain poses that appear
natural. In this paper, we present an inverse-kinematic solution base on the Gaussian Process Latent
Variable Model (GPLVM) for ball catching.

To obtain natural poses in an IK, one could learn from examples of real characters. Examples of
example-based IK include [5, 6, 7, 8, 1]. Due to its flexibility and good performance, we have set
out to use the method by [1] to solve the IK task for a ball catching scenario. The method uses a
scaled GPLVM to represent the likelihood of the poses. However, their work has been mostly tested
on cyclic data set such as walking or sequences with small style variations. On the other hand, the
ball catching movement involves many different styles of movement.

2 Gaussian Process Latent Variable Model

2.1 Probabilistic PCA

Probabilistic PCA (PPCA) is a latent variable model which maps the latent space variables, X =
[x1 x2 · · · ] into the observation variables, Y = [y1 y2 · · · ] through

yn = Wxn + η .

W ∈ RD×q denotes the mapping coefficient where D and q are the dimensions of the observation
and latent space variables respectively. η represents the zero-mean Gaussian distributed noise term
with unit covariance:

p(ηn|β) = N(ηn|0, β−1I) ,
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where β is the inverse variance. Assuming independence across data points, the conditional proba-
bility of the data is given by

p(Y|X,W, β) =

N∏
n=1

N(yn|Wxnβ
−1I) .

If we pick the prior for the latent variables X to be a zero-mean Gaussian with unit covariance, we
can marginalize the latent variables X to get

p(Y|W, β) =
1

(2π)
DN
2 |C|D2

exp
(
−1

2
tr(C−1YYT )

)
,

where the covariance is C = WWT + β−1I.

2.2 GPLVM as the dual of PPCA

If we marginalize over the mapping W instead of the latent variables X, and assuming a Gaussian
prior of the mapping, we get

p(Y|X, β) = 1

(2π)
DN
2 |K|D2

exp
(
−1

2
tr(K−1YYT )

)
,

where K = XXT + β−1I. Note the duality between the above two equations. We can interpret the
above likelihood as a product of D independent Gaussian processes by rewriting it as

p(Y|X, β) =
D∏
i=1

1

(2π)
N
2 |K|D2

exp
(
−1

2
y:,i

TK−1y:,i
T

)
,

where y:,i is the ith column of Y. Here, the Gaussian procees creates a map from the latent space
to the data space. We can learn the mapping thgough maximum likelihood with respect to X. This
is referred to as the Gaussian Process Latent Variable Model (GPLVM). We now extend this by
allowing for non-linear processes by defining a non-linear kernel such as the RBF kernel

k(x,x′) = αexp
(
−γ
2
‖x− x′‖

)
+ δx,x′β−1 ,

here δx,x′ denotes the Kronecker delta and α, β, δ are parameters to the kernel. We can form K with
Ki,j = k(xi,xj). Note that when we jointly optimise the likelihood for the latent space variables X
and the parameters α, β, γ, the cost function will contain many local minima as it is not unique even
in the linear case.

3 Inverse Kinematics with GPLVM

Following [1], we can leverage the dimensionality reduction provided by GPLVM to project the
character data into a low-dimensional latent space while learning the probability distribution func-
tion of the poses in the latent space. This distribution can then be used to select a good pose for the
IK problem.

3.1 Character Model

The character pose is determined by a feature vector containing joint angles and the kinematic chain
root position. We parameterize the joint angles using quaternions to avoid singularity at the cost of
adding an exra dimension (per joint) to the representation [9]. The trade-off is made as such since
it is difficult to avoid singularities just by performing a space rotation [1] for an unpredictable and
varied arm movement as encountered during the catching task.

3.2 Model Learning

We apply a slight modification to the GPLVM model presented earlier by adding a scaling term
to each of the observed variable y [1]. This can be modeled by using different kernel function
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k(x,x′)/s2k for each observation dimension. Alternatively, one could use different covariance func-
tion K for each dimension [10]. This takes into account the different variance in each of its dimen-
sion - necessitated by the different characteristic.

To learn the GPLVM representation of the training data {yi}, we use the following priors for the
unknown latent variable and parameters: p(x) = N(0, I) and p(α, β, γ) = α−1β−1γ−1. We can
then maximize the posterior

p({xi}, α, β, γ, {sk}|{yi}) = p({yi}|{xi}, α, β, γ, {sk})

(∏
i

p(xi)

)
p(α, β, γ)

by minimizing the objective function corresponding to the negative log posterior

LGP =
D

2
ln|K|+ 1

2

∑
k

s2kYk
TK−1Yk +

1

2

∑
i

‖xi‖2 + ln
αβγ∏
k s

N
k

with respect to the unknowns.

3.3 Pose Synthesis

Once the scaled GPLVM has been learned from training data, we can use this model to calculate
the posterior probability of a new pose as per Gaussian process regression. We can maximize this
posterior by minimizing the objective function

LIK(x,y) =
‖S(y − f(x))‖2

2σ2(x)
+

1

2
lnσ2(x) +

1

2
‖x‖2

where

f(x) = µ+Y
T
K−1k(x)

σ2(x) = k(x,x)− k(x)TK−1k(x) .

Here, Y is the mean (µ) subtracted matrix of observed variables and k(x)i = k(x,xi).

The inverse kinematics problem of solving for a pose given some constraints can be solved by
optimizing LIK with respect to x and y with some constraint C(y) = 0. More formally, we want
to solve for:

argmax
x,y

LIK(x,y)

s.t.C(y) = 0 .

4 Experiments and Results

4.1 Motion Capture Experiment

We motion captured a sitted subject upper body movement (excluding the left arm) using a set of 21
markers and instructed the subject to catch the ball thrown towards him with his right hand. Each
trial starts with the subject taking a pre-defined ‘home’ pose. We process the motion capture data
into a feature vector y containing the upper torso, head, and arm joint angles as well as the position
of the upper torso. The data is downsampled from 100 Hz to 25 Hz.

4.2 Learning the scaled GPLVM

We use the Scaled Conjugate Gradient method [11] to optimize the LGP for learning the scaled
GPLVM representation. In our experiment, the dataset was not sufficiently large enough to war-
rant the use of fast approximations through the information vector machine [1, 12] or other sparse
Gaussian Process representations [13, 14].

Using a 2 dimensional latent space, we obtain the latent space representation shown in Figure 1.
The intensity of the background indicates the uncertainty of the mapping. A lighter pixel indicates
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lower uncertainty (higher precision). The different colored traces represents the different latent space
trajectory of each catch trial. Due to the non-cyclic nature of the character pose sequence, we do not
get a cyclic trajectory in the latent space as often seen in various latent space modeling of human
movement examples [1, 15, 10]. We can see that all the trajectories originate from the bottom-left
corner of the latent space; this corresponds to the ‘home’ pose at the start of the experiment.

Figure 1: Learned latent space for 11 ball catching sequences. Lines indicate latent space trajectory
of each sequence. Red crosses are the actual training points.

4.3 Solving for the Inverse Kinematics

We proceed to use the learned model to perform inverse kinematics as described in subsection 3.3.
In the experiment, we set constraints on the position of the tip of the hand. We use the Sequential
Quadratic Programming method as implemented in Matlab’s fmincon function to solve the non-
linear constrained optimization problem. Note that both the constraints and the objective function
are nonlinear. The nonlinearity of the constraints comes from the rigid transformations needed to
transform the observation variable y into the hand position. We initialize the optimizer by picking
a point in the vicinity of the ‘home’ pose of the latent space and at every iteration, the initialization
is updated to use the result of the previous optimization step. This has the benefit of giving some
amount of temporal coherence which is important to achieve smooth character motion.

We first ran the inverse kinematic solver on one of the training data set. The result is shown in
Figure 2. We can see that the inverse kinematic solution manages to generate poses which gives
hand position close to the specified (constraint) trajectory.

A different set of IK tests are performed whereby the constraint trajectories do not come from the
training set. An example of the result is shown in Figure 3. Here, the generated poses fail to meet
the constraints specified. Furthermore, the latent space trajectory (not shown) snakes haphazardly
through the latent space.

5 Discussion

The inability of the method to solve the IK problem in a ball catching scenario comes as a surprise
to us in light of the success by [1] in using this method to solve the IK problem. We thus suspect
that scaled GPLVM is not suitable for modeling non-cyclic and diverse movements.

We have tried using higher dimensional latent space model to improve the result to no avail. As
mentioned before, the objective function is non-convex and thus the optimization process might be
stuck in local minima. We have tried adding the model smoothing process used in [1] which involves
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(a) Character pose (b) Corresponding latent space trajectory

Figure 2: Inverse kinematic result on a trajectory in the training set

Figure 3: Inverse kinematic result on a trajectory in the test set.

creating smoother version of the model to be used as a starting model to search in the optimization
process. This however, does not seem to improve the result obtained.

We suspect that the main reason for the failure of GPLVM to generate a usable latent space stems
from the lack of a smooth mapping from the observed space to the latent space even though the
converse is true. This causes points close together in data space to not necessarily be close in latent
space. We can clearly see this behavior in Figure 1 – the ‘home’ locations for the different sequences
in the latent space can be fairly far apart even though they are very similar in the data (character pose)
space. This is a commonly observed problem in GPLVM and often causes jumps in the latent space
trajectory [10, 15, 16]. In [1], velocity variables are augmented to the observation variable possibly
with the intent of alleviating this problem. However when we tried this, we found no significant
change to the latent space.

There are several modifications proposed to the GPLVM that can enforce this smoothness. One
such proposal is the use of back constraints [17]. Back constraints constraint the latent space to be a
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smooth function of the observation space. Alternatively, one could incorporate a non-linear dynamic
model in the latent space using the Gaussian Process Dynamical Models (GPDM) [16, 15]. Both
the back constraint and GPDM has been shown to improve the quality of the learned latent space
representation. Further extensions to the GPLVM that can possibly improve the result includes
adding topological constraints to improve handling of motion style variations [18].
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