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Robust deconvolution of natural images using
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Abstract

Blur in images can appear in a wide range of imaging applications. In consumer
photography images are often degraded by motion blur due to camera shake, in
medical and aerospace imaging imperfections of the lens system used are signi-
ficant causes of blur. Commonly the blur is modeled as a 2D-convolution of the
underlying sharp image with a 2D blur kernel resulting in the observed blurred
image. Assuming the blur kernel to be known (or estimated) various methods
exist that reconstruct an estimate of the sharp image from a captured blurred im-
age. Commonly only one blurred image is used for this deconvolution. Now, in
many practical applications image sequences of the same scene are available. For
example a sequence of low exposure captures of the scene or subsequent video
frames. This paper presents an approach of how to incorporate this multiple cap-
ture information in the deconvolution of natural scene images. It is shown that
using multiple captures can significantly improve the results. During a capture
strong noise (e.g. shot noise in a low-exposure image) may corrupt the image and
also estimated blur kernels might be noisy due to an imperfect estimation method.
The proposed new approach is robust to noise in the captures and blur estimate.

Original image (640 x 480) Blurred image 2 Blurred image 2 Reconstructed image

Figure 1: Left: Original sharp image. Middle: Two synthetically blurred noisy images (blur kernel
in top left of first blurred image). Right: Deconvolution result of the proposed method using the two
blurred images and a noisy blur kernel estimate.

1 Related work

1.1 Model for the blur

Consider a simplified camera model that consists of an image sensor and a lens between the sensor
and the object to capture. The object is illuminated by some light source and rays of light hitting the
object surface are reflected on each surface point, traveling through the lens until finally hitting the
image sensor. In a perfect imaging system the lens changes the direction of incoming rays so that
all the rays coming from one object point in the scene converge to exactly one point on the image
sensor, thus we get a perfect image (one-to-one mapping) from our scene (points). Blur can now be
defined as the effect that rays of one object point do not converge in exactly one sensor point, that is
they are scattered over a region on the image sensor.
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Imaging sensors consist of an array of sensor elements (pixels) that count the number of incoming
photons, thus the pixel value in a captured image depends linearly on the number of measured
photons (assuming that the image is not gamma corrected).

Using these two general properties of imaging systems discussed in the paragraphs above, we can
formulate blurring with the following linear model. Be B ∈ Rn×m the blurred image, k ∈ Rd×e
the blur kernel and F ∈ Rn×m the underlying sharp image, then it is:

B = k ⊗ F +N that is

B(r, c) =

d/2∑
i=−d/2

e/2∑
j=−e/2

k(i, j)F (r − i, c− j) +N(r, c) with
0 ≤ r ≤ n− 1

0 ≤ c ≤ m− 1

(1)

where ⊗ is the 2D convolution operator and N ∈ Rn×m noise corrupting the blurred image during
the capture. The blur kernel k describes here the scattering of the rays, which would normally con-
verge in a single sensor point in an optimal imaging system, to its neighboring (defocused) positions.
k is centered around its spatial position (0, 0). By using a convolution Eq. (1) makes implicitly the
assumption that the blur does not vary spatially over the image which holds for many practical ap-
plications. A spatially invariant blur kernel (as discussed throughout this paper) is commonly called
point-spread-function (PSF).

1.2 Known deblurring approaches

The ”deconvolution problem” is now defined as solving the inverse problem of Eq. (1) given B,k to
determine F . It can be shown that this problem is ill-posed in the sense of Hadamar [1]. An intuitive
understanding of the ill-posedness can be gained with trying to solve Eq. (1) for B in the fourier
domain:

With B̂ = k̂ · F̂ +N it is
1

k̂
B̂ = F̂ +

N̂

k̂
. (2)

where the hat denotes the Fourier transform. Now assume k̂ to be zero or small in some spatial
frequencies (e.g. that happens for a motion-blur kernel [1]). Since the noise N does not also need to
be zero in these frequencies it is strongly amplified and corrupts the solution.

Because of the ill-posedness of the deconvolution problem, many different approaches exist that try
to cure this ill-posedness by using different regularizations. Common approaches are discussed in
the following paragraphs:

1.2.1 Tikhonov regularization

The Tikhonov regularization places an `2-norm prior on the unknown sharp image F . The following
minimization problem is solved:

argmin
~f

‖~b−K ~f‖22 + λ2‖L~f‖22 , (3)

where λ ∈ R is a regularization factor that weights the two terms in the minimization. Eq. (3) is
formulated with the images now as nm×1-vectors consisting of the columns of the respective image
stacked in sequence. K ∈ Rnm×nm is the blurring matrix according to k that defines in each row
the blur kernel for the considered pixel indiced by the number of that row. L is a convolution matrix
usually set to the identity matrix. Using the vector equality ‖x‖22 = xTx, deriving with respect to F
and setting to zero gives:

(KTK + λ2LTL)~f = KT~b (4)

1.2.2 Regularization using natural image statistics

The `2-norm prior of the Tikhonov regularization is a heuristic approach which only uses the prior
assumption that the solution F has low energy. Significantly better results can be achieved by using
priors that are tailored to the statistics of natural images, see [2] and its application in [3]. From
research on natural image statistics it is known that images of the real-world follow a gradient mag-
nitude distribution that is heavy-tailed [4], [5] (although the color distribution may vary significantly
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in different images). Intuitively that is because the real-world consists of many large smooth sur-
faces (without strong discontinuities and thus small gradient magnitude which causes the mass of the
gradient magnitude distribution to be centered around 0) and the small area of their bounds (strong
gradient magnitude which causes heavy tails).

Now in [2] the MAP estimate Fopt for F given B (and given k assumed to be fixed) is computed
using a heavy tailed gradient magnitude prior for F (again the image forming from Eq. (1) is as-
sumed):

Fopt = argmax
F

P (F |B) = argmax
F

P (B|F )P (F ) , since P (F |B) =
P (B|F )P (F )

P (B)
(5)

The heavy-tailed gradient magnitude prior is modeled in [2] as:

P (F ) ∝ e−α
∑

k ρ(gk⊗F ) (6)

with gk as derivative filters and α ∈ R as a weight for the prior. The prior is made sparse by
using ρ(z) = ‖z‖0.8 (using an `1 norm as in the lasso-method would be also a possible choice).
Assuming that the noise in the image capture (N from Eq. (1)) is gaussian distributed with variance
σ2 the likelihood can be formulated as P (B|F ) ∝ exp

(
− 1

2σ2 ‖B − k ⊗ F‖22
)
. Having the prior

and likelihood defined as above, Eq. (5) becomes after taking the log:

Fopt = argmin
F

‖B − k ⊗ F‖22 + λ
∑
k

ρ (gk ⊗ F ) (7)

where λ = 2ασ2 weights the two minimization terms and is typically specified by the user. The
minimization is done by an IRLS method (discussed in detail later in this paper).

2 Overview

This paper presents a novel approach to exploit multiple capture data in the deconvolution of natural
images. The method is robust to noise in the images and PSF. It is assumed here that the true PSF
is not known in the deconvolution, but rather a noisy PSF estimate (e.g. estimated by the method
in [6]).

Scale         

F l
0 = F l¡1 "

l

Deconvolution using natural image priors, with  
stochastic gradient descent, minimizing in iteration    over: 

 
 

Figure 2: Overview of the proposed deconvolution method in scale space.

To be robust to noise in the PSF and blurred image data the deconvolution is done progressively in
scale-space from coarse to fine (similar to [7]). That is, first image pyramids {Bl{1,..,T}}

L
l=0, {kl}Ll=0

for each image Bi (with i ∈ {1, .., T}) of the T blurred multiple capture images and for the (noisy)
PSF estimate k are generated by repeated bicubic downsampling ofB{1,..,T}, k with the scale factor
1/
√
2. The downsampling is done until the size of the downsampled k becomes smaller or equal to

3× 3, which implicitly determines the number of scales L. Scale L denotes here the finest scale and
0 the coarsest scale.

The bicubic downsampling is essentially a low-pass filtering and resampling. Thus, by each down-
sampling a part of the (high-frequency) noise is removed from the image B{1,..,T} and kernel k
which enables to solve the deconvolution problem more robustly (follows from Eq. (2)). How-
ever, along with noise, also (high-frequency) image details and PSF details are discarded during the
low-pass filtering in the downsampling. Therefore, the idea is to solve the deconvolution problem
successively on each scale from coarse to fine using the result of a coarser scale as initialization of
the next finer scale (see Fig. 2). On each scale l the blurred images Bl{1,..,T} are deconvolved with
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kl yielding the sharp image estimate F l on that scale. The upsampled deconvolution result F l−1 of
the next coarser scale l − 1 is used as the initialization F l0 = F l−1 ↑ of the deconvolution. Here
the operator ↑ denotes (bicubic) upsampling to the next scale. Using the scale-space as described
enables a robust (to noise) deconvolution that is not stuck in possible local minima (see [6]).

The deconvolution in each scale is done using the natural image prior from [2] that was described
in Sec. 1.2.2. So, Eq. (7) is solved, where the minimization is now done jointly over multiple
blurred images captures. This is achieved by doing a stochastic gradient descent iteration where
the minimization is done alternately over the images in a round-robin fashion. This approach is
described in detail below.

With the outlined deconvolution procedure, the sharp image pyramid {F l}Ll=0 is recovered success-
ively from coarse to fine. The final result is the estimate FL on the finest level.

3 Deconvolution using natural image priors on a single scale

To solve the minimization problem from Eq. (7), in [2] an iteratively reweighted least squares ap-
proach (IRLS) (see [8] for an introduction) is proposed. The following minimization problem is
solved by the IRLS method:

~fopt = argmin
~f

∑
j

ρ
(
Aj ~f − bj

)
(8)

with the same matrix notation for the images and kernels as used in Eq. (3). The matrices Aj are
simply all the convolution kernels k,gk in matrix form and the bj chosen as the according ~b or 0
to make Eq. (8) consistent with Eq. (7). The minimization problem Eq. (8) is then solved by the
following IRLS iteration (as described in [8]):

Algorithm 1. (IRLS)

w0
j = 1, i = 0 (Initialization of weights wj)

do
i = i+ 1

A =
∑
j A

T
j w

i−1
j Aj , b =

∑
j A

T
j w

i−1
j bj

xi = A
−1
b ( Solving the lin. system Axi = b for xi.)

uj = Ajx
i − bj

wij(uj) =
1
uj

∂ρ(uj)
∂u ≈ max(|uj |, ε)0.8−2

while
∥∥∥(xi − xi−1)

∥∥∥2
2
/
∥∥∥xi∥∥∥2

2
> δIRLS

~fopt = xi

with δIRLS as a termination constant. In [2] the linear system Axi = b in each iteration is solved by
conjugate gradient method.

The approximation |uj | ≈ max(|uj |, ε) with ε close to 0 is made in the last step of each iteration
to avoid the division by very small values that would generate infinite weights. This is a com-
mon approach to stabilize the IRLS process. It is important to note that this does not solve exactly
Eq. (7), but is only an approximation (which depends on the choice of ε). In [9] a very similar
approach of stabilizing IRLS with ε as a damping weight is discussed. The authors show that for
compressed sensing a significantly higher signal recovery rate can be achieved by iteratively repeat-
ing algorithm 1 (the do-while-loop) for a successively decreasing ε. This behavior was reproduced
for the application here as well - high fixed values of ε generate a large approximation error, while
low values make the IRLS more instable. Therefore, the approach from [9] is adopted here. Starting
with ε = 10−2, the IRLS-loop in algorithm 1 is repeated decreasing ε by a factor of 10 after every
repetition until ε <= 10−5.

The linear systemAxi = b in each iteration of algorithm 1 is now solved by the following stochastic
gradient descent algorithm which jointly minimizes over the multiple captures.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Algorithm 2. (Stochastic gradient descent)

z0 = 1
T

∑T
v=1 bv, j = 0

do
j = j + 1

rj = b(j mod T ) −Azj−1

αj = (rj)T rj

(rj)TArj

zj = zj−1 + αjrj

while
∥∥∥(zj − zj−1)

∥∥∥2
2
/
∥∥∥zj∥∥∥2

2
> δSGD

xi = zj

Since we have T multiple captures B{1,..,T}, also T according multiple b{1,..,T} exist. Algorithm 2
is a modification of the steepest descent iteration as defined in [10] (see the paper for details). The
modification is here that the residual of the current solution zj is minimized alternately between all
captures b{1,..,T} in a round robin fashion. The final result xi is a joint minimizer for all b{1,..,T}. As
an initialization the mean over all b{1,..,T} is chosen. In this work no formal proof of the convergence
of algorithm 2 is given. However, in all practical tests done for this project the iteration converged.

4 Results

To evaluate the proposed approach synthetic data is used. Since the ground truth sharp image F
is known, a quantitative analysis of the quality of the deconvolution results can be presented (that
would not be possible for real-world images where F is unknown). Figure 3 shows a result of the
proposed method and further methods for comparison.

Original image F (320 x 240) Kernel k
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Noisy kernel kn
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Blurred image 1 Blurred image 2 Blurred image 3

Proposed method with PSNR 21.78 SGD method with PSNR 21.514 Reference method with PSNR 18.61 Regularized filter with PSNR 5.8652

Figure 3: Results for synthetic example data.

In the first row the original ground truth image F and the original (large 33 × 33) blur kernel k are
shown. Three blurred images shown in the second row are generated synthetically by the already
discussed Eq. (1) B = k ⊗ F + N , where here N ∝ N (0, 5 · 10−5). Now, to make the test-case
presented here as realistic as possible it is assumed that the true kernel k is not known, but only a
noisy estimate kn = k+Nk withNk ∝ N (0, 5 ·10−7). Deconvolution results of (one or all) blurred
images and kn are shown in the last row of Fig. 3. The quality of the results is measured with the
frequently used peak-signal-to-noise-ratio (PSNR), see [1]. It is the ratio between the maximum
possible signal power and the mean square error of the reconstruction, interpreted as noise power
corrupting the signal. This ratio is expressed using logarithmic decibel scale:

PSNR(Fopt) = 10 log10
1

1
nm‖~F − ~Fopt‖22

[dB] (9)
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for n × m images. The third image in the last row of Fig. 3 shows for reference the result of
applying the natural image statistics method from [2], discussed in Sec. 1.2.2. Only the first blurred
image was used as input data and the parameters proposed in the original paper [2] have been used.
The last image shows the reconstruction with a regularized least-squares filter using the Matlab
function “deconvreg” with default parameter settings. It is considered here as a standard approach
to deconvolution. The regularized least-squares filter minimizes a `2-norm-based regularization
problem similar to Tikhonov regularization (see MATLAB doc). As shown by the PSNR values
(and visual comparison) of the reconstructions, using the natural image prior enables to reconstruct
significantly more details while achieving lower noise in the reconstructions. The second image in
the last row of Fig. 3 shows the proposed stochastic gradient descent method, but without using the
scale space. All the three blurred images and the parameters δIRLS = δSGD = 10−3 have been used
in the deconvolution. To limit the execution time the IRLS loop is terminated after just 2 iterations
(that was sufficient to get good results for a set of test-images). Comparing the deconvolved image
to the reference deconvolution image shows clearly that using multiple blurred capture images can
significantly improve the deblurring results. A visible lower noise level (see also PSNR values) is
achieved. The first deblurred image in the last row of Fig. 3 has been computed with the full method
as proposed in this paper. Comparing it to the second image shows that exploiting scale-space in the
discussed approach can again yield better results. Since the noise is reduced a higher PSNR value is
achieved.

5 Conclusion

This paper has introduced a new deconvolution method exploiting multiple capture data. Is has been
shown that incorporating the multiple images in the deconvolution operation significantly improves
image quality of the reconstructions. Remaining noise is the reconstructions is further damped by
exploiting scale-space. The proposed method is robust to noise in the PSF estimate and blurred
images.
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