
CPSC540

Nando de Freitas
October, 2011
University of British Columbia

Optimization and Online Learning

for Logistic Regression and Neuron Models

Gradient vector
• Let θ be an d-dimensional vector and f(θ) a scalar-valued function. The

gradient vector of f(·) with respect to θ is:

∇θf(θ) =






∂f(θ)
∂θ1
∂f(θ)
∂θ2
...

∂f(θ)
∂θn






[Nature 2011]

• The Hessian matrix of f(·) with respect to θ, written ∇2
θ
f(θ) or simply

as H, is the d× d matrix of partial derivatives,

∇2
θ
f(θ) =





∂2f(θ)
∂θ21

∂2f(θ)
∂θ1∂θ2

· · · ∂2f(θ)
∂θ1∂θn

∂2f(θ)
∂θ2∂θ1

∂2f(θ)
∂θ2

2

· · · ∂2f(θ)
∂θ2∂θd

. . . .





Hessian matrix

∇
θ
f(θ) =




· · ·

...
...

. . .
...

∂2f(θ)
∂θd∂θ1

∂2f(θ)
∂θd∂θ2

· · · ∂2f(θ)
∂θ2

d




Gradient descent in machine learning
• In offline learning, we have a batch of data x1:n = {x1,x2, . . . ,xn}. We

typically optimize cost functions of the form

f(θ) = f(θ,x1:n) =
1

n

n∑

i=1

f(θ,xi)

• The corresponding gradient is

g(θ) = ∇θf(θ) =
1

n

n∑

i=1

∇θf(θ,xi)

• In some cases, we can solve g(θ) = 0 in closed form, but in general, we
will have to use gradient-based optimizers.

• If we have streaming data or massive datasets, we opt for online learn-
ing. That is, we update our estimates as each new data point arrives.

• For linear regression with training data {xi, yi}
n
i=1, we have have the

quadratic cost

f(θ) = f(θ,X,y) = (y −Xθ)T (y −Xθ) =
n∑

i=1

(yi − xiθ)
2

• The gradient and Hessian are:• The gradient and Hessian are:

McCulloch-Pitts model of a neuron

What discriminant curve best separates these
two classes best?

Next day, we get more data and a surprise!

If the discriminant is a line, what is the best line?

Logistic regression
• The logistic regression model specifies the probability of a binary output
yi ∈ {0, 1} given the input xi as follows:

p(y|X, θ) =

n∏

i=1

Ber(yi|sigm(xiθ))

=
n∏

i=1

[
1

1 + e−xiθ

]yi [
1−

1

1 + e−xiθ

]1−yi∏

i=1

[

−

] [
−

−

]

where xiθ = θ0 +
∑d

j=1 θjxij
∑

• sigm(η) refers to the sigmoid function, also known as the logistic or
logit function:

sigm(η) =
1

1 + e−η
=

eη

eη + 1

Gradient and Hessian of binary logistic regression

• The gradient and Hessian of the negative loglikelihood, J(θ) = − log p(y|X, θ),
are given by:

g(w) =
d

dθ
J(θ) =

n∑

i=1

xTi (πi − yi) = XT (π − y)

H =
d

dθ
g(θ)T =

∑

i

πi(1− πi)xix
T
i = XTdiag(πi(1− πi))X

dθ

∑

i

− −

where πi = sigm(xiθ)

• One can show that H is positive definite; hence the NLL is convex and
has a unique global minimum.

• To find this minimum, we turn to batch optimization.

Steepest gradient descent

• One of the simplest optimization algorithms is called gradient descent
or steepest descent. This can be written as follows:

θk+1 = θk − ηkgk = θk − ηk∇f(θ)

where k indexes steps of the algorithm, gk = g(θk) is the gradient at step
k, and η > 0 is called the learning rate or step size.k, and ηk > 0 is called the learning rate or step size.

• Taylor’s theorem illustrates why this is a sensible thing to do:

f(θk+1) ≈ f(θk) +∇f(θk)(θk+1 − θk) = f(θk)− ‖∇f(θk)‖
2

Step size choice

Line search

•
θk+1 = θk + ηkdk

f(θ + ηd) ≈ f(θ) + ηgTd

• Pick η to minimize• Pick η to minimize
φ(η) = f(θk + ηdk)

subject to the constraint that the resulting direction is a descent direction
(the so-called Wolfe conditions).

• This optimization of η can be costly. Alternatively, choose an initial step
size η. If the step size doesn’t decrease in the objective function, then
reduce the step size and repeat. This is the intuituition behind the Armijo
rule.

Newton’s algorithm
• The most basic second-order optimization algorithm is Newton’s algo-

rithm, which consists of updates of the form

θk+1 = θk −H−1
K gk

• This algorithm is derived by making a second-order Taylor series approx-
imation of f(θ) around θk:

T 1 Tfquad(θ) = f(θk) + gTk (θ − θk) +
1

2
(θ − θk)

THk(θ − θk)

differentiating and equating to zero to solve for θk+1.

Newton’s as bound optimization

Newton CG algorithm
• Rather than computing dk = −H−1

k gk directly, we can solve the linear
system of equations Hkdk = −gk for dk.

• One efficient and popular way to do this, especially if H is sparse, is to
use a conjugate gradient method to solve the linear system.

Iteratively reweighted least squares (IRLS)
• For binary logistic regression, recall that the gradient and Hessian of the

negative log-likelihood are given by

gk = XT (πk − y)

Hk = XTSkX

Sk := diag(π1k(1− π1k), . . . , πnk(1− πnk))

πik = sigm(xiθk)ik i k

• The Newton update at iteration k + 1 for this model is as follows (using
ηk = 1, since the Hessian is exact):

θk+1 = θk −H−1gk

= θk + (XTSkX)−1XT (y − πk)

= (XTSkX)−1
[
(XTSkX)θk + XT (y − πk)

]

= (XTSkX)−1XT [SkXθk + y − πk]

Quasi-Newton methods
• The Newton direction dk = −H−1

k gk has two drawbacks. The first is that
it is not necessarily a descent direction unless Hk is positive definite.

• The second is that it may be too expensive to compute H explicitly.

• Quasi-Newton methods iteratively build up an approximation to the
Hessian using information gleaned from the gradient vector at each step.

• BFGS (named after its inventors, Broyden, Fletcher, Goldfarb and Shanno),
updates the approximation to the Hessian Bk ≈ Hk as follows:

Bk+1 = Bk +
yky

T
k

yTk sk
−

BT
k sTk skBk

sTkBksk
sk = θk − θk−1

yk = gk − gk−1

This is a rank-two update to the matrix, and ensures that the matrix
remains positive definite.

L-BFGS
• Since storing the Hessian takes O(d2) space, for very large problems, one

can use limited memory BFGS, or L-BFGS, where a low rank approx-
imation to Hk is stored implicitly. In particular, the product H−1

k gk can
be obtained by performing a sequence of inner products with sk and yk,
using only the m most recent (sk,yk) pairs, and ignoring older informa-
tion. Typically m ∼ 20 suffices for good performance.

• L-BFGS and Newton CG are often the methods of choice for most uncon-
strained optimization problems that arise in machine learning, e.g., fittingstrained optimization problems that arise in machine learning, e.g., fitting
logistic regression, conditional random fields (CRFs), neural nets, etc.

Online learning
• The online gradient at iteration k is given by

gk := g(θk) ≈ (xiθ − yi)xi

where i = k mod n is the training example to use at iteration k.

• The feature vector xi is weighted by the difference between what we pre-
dicted, ŷi = πi = xiθk, and the true response, yi.dicted, ŷi = πi = xiθk, and the true response, yi.

• After computing the gradient, we take a step along it as follows:

θk = θk−1 − ηkgk = θk−1 − ηk(πi − yi)xi

This algorithm is called the least mean squares (LMS) and is also
known as the delta rule, or the Widrow-Hoff rule.

The LMS algorithm

• In stochastic gradient descent (SGD), we write the objective and its
gradient as an expectation with respect to the empirical distribution of
the data pemp(x):

f(θ) = Ex∼pemp [f(θ,x)] =

∫
f(θ,x)pemp(x)dx, g(θ) = Ex∼pemp [∇f(θ,x)]

We approximate the gradient with a single sample, xk, corresponding to
the most recent observation:

θk = θk−1 − ηkg(θk−1,xk)θk = θk−1 − ηkg(θk−1,xk)

Stochastic gradient descent
• SGD can also be used for offline learning, by repeatedly cycling through

the data; each such pass over the whole dataset is called an epoch. This
is useful if we have massive datasets that will not fit in main memory.
In this offline case, it is often better to compute the gradient of a mini-
batch of B data cases. If B = 1, this is standard SGD, and if B = N ,
this is standard steepest descent. Typically B ∼ 100 is used.

• Intuitively, one can get a fairly good estimate of the gradient by looking
at just a few examples. Carefully evaluating precise gradients using large

•
at just a few examples. Carefully evaluating precise gradients using large
datasets is often a waste of time, since the algorithm will have to recom-
pute the gradient again anyway at the next step. It is often a better use
of computer time to have a noisy estimate and to move rapidly through
parameter space.

• SGD is often less prone to getting stuck in shallow local minima, because it
adds a certain amount of “noise”. Consequently it is quite popular in the
machine learning community for fitting models such as neural networks
and deep belief networks with non-convex objectives.

Momentum
• One simple heuristic to reduce the effect of zig-zagging is to add a mo-

mentum term, as follows:

θk+1 = θk + (1− µk)ηkgk + µk(θk − θk−1)

where 0 ≤ µk ≤ 1 is the amount of momentum.

• This technique is widely used to train neural networks and other nonlinear• This technique is widely used to train neural networks and other nonlinear
models, such as deep belief nets.

• Hinton recommends starting with µk = 0.5 and then slowly increasing this
to µk = 0.9. See also results of Kevin Swersky.

