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Probability

Probability theory is the formal study of the laws of

chance. It is our tool for dealing with uncertainty. Notation:

e Sample space: is the set 2 of all outcomes of an
experiment.
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denote a particular outcome. e.g. for a die we have
Q = {1,2,3,4,5,6} and w could be any of these six

numbers.

e Event: is a subset of €2 that is well defined (measur-
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he event A = {even} if w € {2,4,6}




Freguentist interpretation
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Axiomatic interpretation

The axiomatic view is a more elegant mathematical solu-
tion. Here. a probabilistic model consists of the triple
(€2, F. P), where ) is the sample space, F is the sigma-field
(collection of measurable events) and /7 is a function map-
ping F to the interval [0, 1]. That is, with each event A € F

we associate a probability P(A).
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The axioms
1 P(0) =0 < p(4) < 1= P(Q)

2. For disjoint sets A,, n > 1, we have
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OR and AND operations
d

P(AT B) = P(A) + P(B) — P(,ﬁ;)
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Conditional
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where P(A|B) is the conditional probability of A given

P(A|B) 2

that B occurs, P(B) is the marginal probability of B
and P(AB) is the joint probability of A and B. In

general. we obtain a chain rule
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It the events A and 55 a.;)'ej)iéﬁhepeudent we have I’'(AD) =
P(A)P(B). = Pla£)?(b)

Conditional probability example

/// * Assume we have an urn with 3 red balls and 1 blue \

2 ball: U = {r,r.r,b}. What is the probability of drawing

(without replacement) 2 red balls in the first 2 tries?
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Marginalization
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Marginalization example

/I/ “x What is the probability that the second ball (IIIHN
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Bayes rule

Bayes rule allows us to reverse probabilities:

P(B|A)P(A)
P(B)

// P(ag) = P(814)P(R) = P(aI1R) P(s)\
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Learning and Bayesian inference
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Speech recognition

P(words | soundp  P(sound | words) P(words)

Final beliefs Likelihood of data Language model
eg mixture of Gaussians €9 Markov model
o J
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Hidden Markov Model (HMM)

“Recognize speech” “Wreck a nice beach”

VAR

Definition of discrete r.v.s

Let E be a discrete set, eg. E = {0,1}. A discrete

random variable (r.v.) is a map from Q2 to E:

X(w): Qw— FE
such that for all x € E we have {w|X (w) < x} € F. Since

F denotes the measurable sets, this condition simply says

that we can compute (measure) the probability P(X = x).




Probabillity distributions

* Assume we are throwing a die and are interested in
the events £ = {even, odd}. Here 2 = {1,2.3,4,5,6}.
The r.v. takes the value X (w) = even if w € {2. 4,6}
and X (w) = odd if w € {1,3,5}. We describe this r.v.
with a probability distribution p(r;) = P(X =

The CDF

The cumulative distribution function is defined as

= P(X < x) and would for this example be:
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Expectation
The expectation of a discrete random variable X is
I -
KIX] = L rpla;)
E
The expectation operator is linear, so E(ax;+bxrsy) = aE(x)+

bE(xr2). In general, the expectation of a function f(.X) is
E[f(X)] =) fla:)plas)
E

Mean: 1 = E(X)

Variance: 02 £ E[(X — ;1)?]

Bernoulli r.v.s and the indicator function
Let E={0,1}, P(X =1)= X and P(X =0)=1—- A\

We now introduce the set indicator variable. (This is a very

useful notation.)

1 2f w e A;
La(w) =

0 otherwise.

Using this convention. the probability distribution of a Bernoulli

random variable reads:

p(x) = A @ (1 — \lo @,
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Maximum likelihood example

/ /’ Let a1, with 2; € {0, 1}, be i.i.d. Bernoulli: \
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Maximum likelihood example

/ With m = Z x;, we have \
/ Lle) = L? P("\:u‘9>
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Diffefentiating. we get

L1 _ ™ (m-w) 1€
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Bayesian learning
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the Bavesian approach allows us to update our prior using

the new data xy., as follows: LK — Pt (oY

()OG‘C((F;T“ ) play, |H 1p(6)
P\ |L1:n) =
P («l l:u)

where p(#|xy.,) is the posterior distribution, p(r.,|0)
is the likelihood and p(zy.,) is the marginal likelihood

(evidence). Note
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(Beta prior
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Example

Let a with z; € {0,1}, be i.i.d. Bernoulli: x; ~ B(1,6)
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Let us choose the following Beta prior distribution:
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where I' denotesAhe Gamma-function. For the tim
being, a and 3 are fixed hyper-paramet

posterior distribution is proportional to:




with normalisation constant
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