

CPSC540

Discrete Probability and Bayesian Learning

Nando de Freitas September, 2011 University of British Columbia

Probability

Probability theory is the formal study of the laws of chance. It is our tool for dealing with uncertainty. Notation:

- Sample space: is the set Ω of all outcomes of an experiment.
- Outcome: what we observed. We use ω ∈ Ω to denote a particular outcome. e.g. for a die we have Ω = {1, 2, 3, 4, 5, 6} and ω could be any of these six numbers.
- Event: is a subset of Ω that is well defined (measurable). *e.g.* the event $A = \{even\}$ if $w \in \{2, 4, 6\}$

Axiomatic interpretation

The axiomatic view is a more elegant mathematical solution. Here, a **probabilistic model** consists of the triple (Ω, \mathcal{F}, P) , where Ω is the sample space, \mathcal{F} is the sigma-field (collection of measurable events) and P is a function mapping \mathcal{F} to the interval [0, 1]. That is, with each event $A \in \mathcal{F}$ we associate a probability P(A).

$$\begin{cases} \Omega = \{1, 2, 3, 4, 5, 6\} \\ \Re = Powerset = \{\phi, 1, 2, ..., 6, \{1, 2\}, ... \} \\ P(even) = \frac{1}{2} \\ P(odd) = \frac{1}{2} \end{cases}$$

The axioms

1.
$$P(\emptyset) = \underline{0} \le p(A) \le 1 = P(\Omega)$$

2. For **disjoint sets** A_n , $n \ge 1$, we have

 $P(A_{1:n}) = P(A_n | A_{1:n-1}) P(A_{n-1} | A_{1:n-2}) \dots P(A_2 | A_1) P(A_1)$ If the events A and B are price pendent, we have P(AB) = P(A)P(B). • P(A | A) P(B)

Conditional probability example

* Assume we have an urn with 3 red balls and 1 blue ball: $U = \{r, r, r, b\}$. What is the probability of drawing (without replacement) 2 red balls in the first 2 tries? $P(d_1=t) = \frac{3}{4}$ $P(d_2=r, d_1=r) = P(d_2=r | d_1=r) P(d_1=r)$ $= \frac{2}{3} = \frac{3}{4} = \frac{1}{2}$

Marginalization

Let the sets $B_{1:n}$ be disjoint and $\bigcup_{i=1}^{n} B_i = \Omega$. Then

Marginalization example

* What is the probability that the second ball drawn from our urn will be red? $P(d_{2}=t) = \sum_{\substack{a \in \{b, \neq \} \\ a_{i} \in \{b, \neq \}}} P(d_{2}=t, d_{i})$ $= \sum_{\substack{a \in \{b, \neq \} \\ a_{i} = a_{i}}} P(d_{2}=t, | d_{i}) P(d_{i})$ $= P(d_{2}=t, | d_{i}=t) P(d_{i}=t) + P(d_{2}=t, | d_{i}=b) P(d_{i}=b)$

Bayes rule allows us to reverse probabilities:

Definition of discrete r.v.s

Let E be a discrete set, e.g. $E = \{0, 1\}$. A **discrete** random variable (r.v.) is a map from Ω to E:

$$X(w): \Omega \mapsto E$$

such that for all $x \in E$ we have $\{w | X(w) \leq x\} \in \mathcal{F}$. Since \mathcal{F} denotes the measurable sets, this condition simply says that we can compute (measure) the probability P(X = x).

Probability distributions

* Assume we are throwing a die and are interested in the events $E = \{even, odd\}$. Here $\Omega = \{1, 2, 3, 4, 5, 6\}$. The r.v. takes the value X(w) = even if $w \in \{2, 4, 6\}$ and X(w) = odd if $w \in \{1, 3, 5\}$. We describe this r.v. with a **probability distribution** $p(x_i) = P(X =$

Expectation

The expectation of a discrete random variable X is

$$\mathbb{E}[X] = \sum_{E} x_i p(x_i)$$

The expectation operator is linear, so $\mathbb{E}(ax_1+bx_2) = a\mathbb{E}(x_1)+b\mathbb{E}(x_2)$. In general, the expectation of a function f(X) is

$$\mathbb{E}[f(X)] = \sum_{E} f(x_i) \, p(x_i)$$

Mean: $\mu \triangleq \mathbb{E}(X)$ Variance: $\sigma^2 \triangleq \mathbb{E}[(X - \mu)^2]$

Bernoulli r.v.s and the indicator function

Let $E = \{0, 1\}, P(X = 1) = \lambda$, and $P(X = 0) = 1 - \lambda$.

We now introduce the *set indicator variable*. (This is a very useful notation.)

$$\mathbb{I}_{A}(w) = \begin{cases} 1 & if \qquad w \in A; \\ 0 & otherwise. \end{cases}$$

Using this convention, the probability distribution of a **Bernoulli** random variable reads:

$$p(x) = \lambda^{\mathbb{I}_{\{1\}}(x)} (1 - \lambda)^{\mathbb{I}_{\{0\}}(x)}.$$
if we have
$$\mathbb{I}_{\{1\}}(x) = \int (x_{0})^{\mathbb{I}_{\{0\}}(x)} = \lambda^{\mathbb{I}_{\{1\}}(x)}$$

Bayesian learning

Given our **prior** knowledge $p(\theta)$ and the data **model** $p(\cdot|\theta)$, the Bayesian approach allows us to update our prior using the new data $x_{1:n}$ as follows:

v data
$$x_{1:n}$$
 as follows:

$$p(\theta|x_{1:n}) = \frac{p(x_{1:n}|\theta)p(\theta)}{p(x_{1:n})}$$

where $p(\theta|x_{1:n})$ is the **posterior distribution**, $p(x_{1:n}|\theta)$ is the likelihood and $p(x_{1:n})$ is the **marginal likelihood** (evidence). Note

$$p(x_{1:n}) = \int p(x_{1:n}|\theta)p(\theta)d\theta$$

Example

Let $x_{1:n}$, with $x_i \in \{0, 1\}$, be i.i.d. Bernoulli: $x_i \sim \mathcal{B}(1, \theta)$

$$p(x_{1:n}|\theta) = \prod_{i=1}^{n} p(x_i|\theta) = \theta^m (1-\theta)^{n-m}$$

Let us choose the following **Beta** prior distribution:

$$p(\theta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1} \int_{\Theta}^{\Theta} \int_{(1-\theta)}^{(1-\theta)} d\theta^{\alpha-1} d\theta^{\alpha-1$$

where Γ denotes the Gamma-function. For the time being, α and β are fixed **hyper-parameters**. The posterior distribution is proportional to:

