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Outline

Linear regression and prediction are singleervised learnintasks.
But,

* Many real processes can be approximated with linear models.
* Linear regression often appears as a module of larger sy

* Linear problems can be solved analytically.

* Linear prediction provides an introduction to many of the core

concepts of machine learning, while still allowing for analytical
tractability.




We are given a training dataset of n instances of input-ouput pairs
{X1:, Y1}t Each input x;, € R is a vector with d attributes. The
inputs are also known as predictors or covariates. The output, often
referred to as the target, will be assumed to be univariate, y; € R, for
Now.

T

A typical dataset with n = 4 instances and 2 attributes would look
like the following table:

Wind speed People inside building Energy requirement

100 2 5
50 42 25
45 31 22
60 35 18

Given the training set {xi.,,¥1..}, we would like to learn a model of
how the inputs affect the outputs. Given this model and a new value
of the input x,,.1, we can use the model to make a prediction y(x,1).

Prostate cancer exam

U Goat Predict a prostate specific antigen (Iogpﬁa) from a
number of clinical measures in men who are about to recelve a
radical prostatectomy. [ (e

UTheinputsare:

® Log cancer voluméedavol)

* Log prostate weight\{eight)

* Age

* Log of the amount of benign prostatic hyperplaﬂ)ato
« Seminal vesicle invasiors\(i) - binary

* Log of capsular penetratioit|)

* Gleason scorey(easoi) — ordered categorical

« Percent of Gleason scores 4 op§d49

[Hastle leshlranl & Frledman book]




Linear regression in 1D

’Q(Xi) = 91 — 33«2192
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Linear prediction

In general, the linear model is expressed as follows:

d
Yi = E 33@;‘9;/7
Jj=1

where we have assumed that x;; = 1 so that 6; corresponds to the
intercept of the line with the vertical axis. #; is known as the bias or
offset.

In matrix form, the expression for the linear model is:
y = X0,
with y € R X € R"™? and 8 € R¥!. That is,

@1 L11 - X4 0,

y'n Lni e Tnd Hd




Linear prediction

Wind speed People inside building Energy requirement
100 2 5

50 42 25
45 31 22
60 35 18

For our energy prediction example, we would form the following ma-
trices with n =4 and d = 3:

5 1 100 2 .
25 1 50 42 !
Y=loo|: X=11 45 31| 9= %
18 1 60 35 3

Suppose that @ = [1 0 0.5]". Then, by multiplying X times 6, we
would get the following predictions on the training set:

2 1100 27
o | 22| _ |1 50 42| |
Y= 1165 1 45 31 [0 5] '
18.5 1 60 35| L

Multiple outputs

If we have several outputs y, € R, our linear regression expression
?

becomes:
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Linear classification with indicators
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As discussed in Ch 4 of [Hastie, Tibshirani & Frieagh book], this approach is easy, but not recomesbnd
To describe better approaches, we will have tothtce notions of probability and optimization.

Optimization approach

Our aim is to mininimise the quadratic cost between the output labels
and the model predictions

o O,




Optimization approach

We will need the following results from matrix differentiation:

c);w AT and 09TA9 —92ATH

K/ 2J0) _ 9 'y~ xe) (7-xe0)

- 09 ¢

e
AN
O +(Xo =KL Y

K \(TX O = XTy

/l

\

.
( v+ olvo *Nxe)

/

Optimization approach
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The corresponding pledlctlonb are

j=Hy = 2o = (Xg(yi

where H is the “hat” matrix.

.

~

These are the normal equations. The solution (estimate) is:
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Geometric approach

Probability approach: Univariate Gaussian distigout

The probability density function (pdf) of a Gaussian distribution is
given by

p(z) = oA—e mr @,

2o

where p is the mean or center of mass and o is the variance.
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Multivariate Gaussian distribution

Let y € R”Xl, then pdf of an n-dimensional Gaussian is given l)y
g
p(.CC) = |27T2| 1/26 %(‘ W E Ny ‘),

where

and

Energy ((‘\‘distance”) and probability
d{y

The exponent 4 (y — p)" 37 (y — p) is called the Mahalanobis dis-
tance. Conceptually, it measures the weighted Euclidean distance be-
tween y and u.

// P(Yy)- \'LWZY\/Le'llo\(Y) §[7E\
u(’) = 2 e—E@

\LO? F(Y) = ELY> —Lpé%
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Maximum likelihood

We will assume that our errors in the target predictions are Gaussian
distributed as follows: =

|
y = X0 + N(0,0°1,,) T [ | 9
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Maximum likelihood

The maximum likelihood estimate (MLE) of € is obtained by tak-
ing the derivative of the log-likelihood, log p(y|X, @, ). The goal is to
maximize the likelihood of seeing the training data y by modifying the
parameters (8, 0).
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Maximum likelihood

K/ "The ML estimate of 0 is: \
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Maximum likelihood

K/ Proceeding in the same way, the ML estimate of o 1\

zZ—

> b F(ﬂkes> — O
al

]

N /

Probabilistic graphical models (DAGs, Bayesian rogks)
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Linear regression DAG
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Why the MLE: Hallucination!

The MLE assumes that the data has been generated by a dlstrlbutlon
p(Y|X, 8y) for some true parameter 6. —— _

0 = argmax H1 plyilx:, )

—_— > - } y ) 4
= arg ngaXZ log p(y;|x:, 8) ‘/l/ v
i=1

= argmax 320 log p(yilx;, 6) — 5 200 log p(yilxi, 60)

e g Pyilxi, 0)
= argmax - > ., log ———%
6 ! p(yi|X2'790) /Q/ Kl/
| p(ysxs, 60) A*mvawﬂcf
— argmin [ log —————— x,0,)d \
gmi f 8 (. 0) p(ylx; 60)dy

= argmeinflogp(y\x, 60)p(ylx, 80)dy — flogp( 1%, 8)p(ylx, Bo)dy

Why the MLE (frequentist view)

Under smoothness and identifiability assumptions,
the MLE is consistent:

>
>

or equivalently,

lim P(|0 — 6,| > a)—0
N—co
The MLE is asymptotically normal. That is, as N — 0o, we have:
0—-6,— N(O.I

where [ is the Fisher Information matriz.

It is asymptotically optimal or efficient.




Reqularization

All the answers so far are of the form

6=(X"X)'X"y
They require the inversion of X*X. This can lead to problems if the
system of equations is poorly conditioned. A solution is to add a small
element to the diagonal:

0=(X"X+461I,)"' X"y

This is the ridge regression estimate. It is the solution to the following
regularised quadratic cost function

J(0) = (y —X0)"(y —X0) +5°0" 0

Proof
/o
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Ridge regression as constrained optimization

K/ CJO) =(y-X0)" (y-X6)+5°0"0 Lo (c\V\a‘:av‘ \
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[Hastie, Tibshirani & Friedman book]




Ridge, feature selection, shrinkage and weightyleca

Large values of @ are penalised. We are shrinking € towards zero. This
can be used to carry out feature weighting. An input z; , weighted by
a small 6, will have less influence on the ouptut y;. This penalization
with a regularizer is also known as weight decay in the neural networks
literature.

Note that shrinking the bias term 6, is undesirable. To keep the
notation simple, we will assume that the mean of y has been subtracted

from y. This mean is indeed our estimate ;.

The Lasso: least absolute selection and shrinkpgeator

A== ww\




Spectral view of ridge regression
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Regularization and noise filtering

The filter factor

. =

2

g;

o + 52

penalises small values of o2 (they go to zero at a faster rate).

Minimax and cross-validation

Cross-validation is a widely used technique for choosing d. Here’s an
/ example: (J’Jﬁ\’&qp
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Least Angle Regression

A
Algorithm 3.2 Least Angle Regression. \/ - X {))
1. Standardize the predictors to have mean zero and unit norm. Start
with the residual r =y — ¥, 51, 52,....3, = 0. ny\ hyP Px\

2. Find the predictor x; most correlated with r.

3. Move 3; from 0 towards its least-squares coefficient (x;,r), until some Ba.(a) =4, +a- 0
other competitor x; has as much correlation with the current residual

s xT 1T
as does x;. Ok = (X4, Xa,) X4, Tk

4. Move 3; and 3 in the direction defined by their joint least squares

coefficient of the current residual on (x;,x;), until some other com- —

petitor x; has as much correlation with the current residual. >< Z.‘ 2. 00X
_— *oe XX
- J P

5. Continue in this way until all p predictors have been entered. After
min(N — 1, p) steps, we arrive at the full least-squares solution.

Suppose A is the active set of variables

r. =Yy — Xu4,/4, is the current residual

[Hastie, Tibshirani & Friedman book]

Fitting the residuals




The Lasso & LAR

Algorithm 3.2 Least Angle Regression.

Least Angle Regression

o 1. Standardize the predictors to have mean zero and unit norm. Start
T x with the residual r =y —y, 51,532,..., 8, = 0.

2. Find the predictor x; most correlated with r.

-15 -10 -05 00 05

1 3. Move 3; from 0 towards its least-squares coefficient (x;,r), until some
[ other competitor x; has as much correlation with the current residual
Lasso as does x;.
o » 4. Move 3; and B in the direction defined by their joint least squares
— + . . .

o N coefficient of the current residual on (x;,xy), until some other com-
= ] ’
o | ~ petitor x; has as much correlation with the current residual.
7 5. Continue in this way until all p predictors have been entered. After
T min(N — 1, p) steps, we arrive at the full least-squares solution.

0 E‘y WID 1'5

Algorithm 3.2a Least Angle Regression: Lasso Modification.

4a. If a non-zero coefficient hits zero, drop its variable from the active set
of variables and recompute the current joint least squares direction.

[Hastie, Tibshirani & Friedman book]

The Lasso as LAR intuition

When the active attributes are tied, in the sense that the absolute
value of their inner-product with the residuals is the same (having
standardized the inputs so that instead of using correlations, we are
now using inner-products), we have:

x| (y — X6) = vysign(x| (y — X0)), Vje A

where X = [xy,...,x4], with x; € R"™! 7 is the common absolute
value and the sign function sign(x} (y — X)) is in {—1,1}. The set A
is the active set.

Ibifferentiating\\the Lasso’s Lagrangian

d ~l +1
J(0) = (y —X0)"(y — X0) + 6> 0]

=1
with respect to 6, and equating to zero, we get
—x! (y — X80) + §°sign(6,) = 0
x! (y —X60) = &%sign(d;), VjeB

[Hastie, Tibshirani & Friedman book]




Lasso using optimization

9 0
= (8) = a;0; — ¢; + 6° =0

20, 20,
a; =2 Z chJ
=1
¢ =2 w;(y; — 65 x )
=1

where 0_, = 6 without component j and likewise for x; _;. We see that
¢; is (proportional to) the correlation between the j'th feature x; and
the residual due to the other features, r_; =y — X_,0_,.

Subdifferentials
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{—1} ifx<O
of(x) =< [-1,1] ifa=0
{+1} ifa>0

[Wikipedia]




Lasso using optimization

{Cl',j@j — Cj — (52} if Qj <0
0o, J(0) = a;0; — c; + 020y 10, = { [—¢; — 62, —c; + 0% 10, =0
{(Ij(gj — Cj + (52} lf 93' > 0

Buny. (Wy B (w, A)
B F A>0 /
c.-A>0 - ;

ﬂ)k'(O//-‘ wk:o( -C‘\,+/-.>O

// WK / 'C\\' -A<0

_ (¢; +6%)/a;, ifc < —§2 = ~>
0; = 0 if ¢; € [-0%0% = [ »)
(¢; —0%)/a, if ¢, >52 )\

[Kevin Murphy’s book]

Coordinate descent for lasso

Algorithm 11.1: Coordinate descent for lasso (aka shooting algorithm)

1 Initialize w = (XX + \I) "' X"y,

2 repeat W\ o)

3 forj=1,...,Ddo ']

4 CLJZQZ?:IT?) >\‘ S

5 cj =23 iy —w X?‘l'wT?J)» N

6 if c; < —) then PY?J'{"V V= p

(.7j+>\

7 | wy = aj; 3
else if ¢; > )\ then 'H?V\ Xy
| w] — (,‘,ja;A XG

10 else

11 | w; =0

12 B

13 until converged,

[Kevin Murphy’s book]




