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Ensemble methods

Ensemble methods (boosting, random forests) are powerful
algorithm design paradigms. They

U enable us to combine many weak learners to produce a strong
learner.

U can be applied to nonlinear regression, density estimi
classification and are brilliant tools for feature selection.

U are easy understand, implement and optimize.

The boosting slides used in this lecture use material frerar
Bldhlmann and Bin Yu (2009). Boosting. Wiley Interdisciplinary
Reviews: Computational Statistitstrongly recommend the book of
Friedman, Hastie and Tibshirani for this section of the course.




Problem setup

Suppose that we observe
(i Y )i s v o (X s Yo

where X; € R” denotes a p-dimensional predictor variable and Y; a univariate
response, for example taking values in R as in regression or in {—1,+1} as
in binary classification. In the sequel, we denote by X) the jth component
of a vector X € RP. We usually assume that the pairs (X;.Y;) are 1.i.d. or
from a stationary process. The goal is to estimate the regression function

F(x) = E[Y|X = x] or to find a classifier sign(F(x)) where F(z) : R? — R.

Expected and Empirical Loss

The estimation performance is evaluated via a real-valued loss function
in the sense that we want to minimize the expected loss or risk:

EL(Y, F(X)).

based on data (X;,Y;)(i = 1,...,n). The loss function L is assumed to be
smooth and convex in the second argument so that the gradient method can
be applied. Boosting algorithms are obtainable by minimizing the empirical
loss function

n 'Y LY, F(Xy)),
i=1




From weak learners to strong ones:
functional gradient descent

The boosting methodology in general builds on a user-determined hase
procedure or weak learner and uses it repeatedly on modified data which
are typically outputs from the previous iterations. The final boosted proce-
dure takes the form of linear combinations of the base procedures. Precisely,
given a base learner h(x,#), boosting is derivable as functional gradient de-
scent on the loss function L.

Boosting (gradient descent view)
1. Start with Fy(xz) = 0.

2. Given Fy-1(x), let

n
(Bm- h(z.0m))) = argmingerp Y L(Yi, Fpo1(X:) + Bh(z,6)).
i=1
Fm(?-{') - Fm—l(?l') T ;‘:'-5-172./1'(-1‘- ém )
4. Stop when m = M.

The AdaBoost classifier is sign(Fyz(x)).




L2Boosting: coordinatewise descent for linear models
1. Start with Fy = 0.

2. Given.-F,3'(z); Compute residuals U = ¥ — F, 1 (X;) (# = 1500+ n).
Let XT-(‘I ) be the jth component of X; € RP,

n

j i 2y ()y)2

Jm = argmin;=1,_.p Z(U’l _ “‘ijX‘;_] )) .
i=1

n
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B = argming E (U; — ;J’X}J’”))ﬂ
i=1

Fm (l) — Eu—l (;’1.') + ,*'-TimX(‘.}.m )

4. Stop when m = M and Fj(x) is the final estimator of the linear
regression function.

L2 boosting

# Assume the input datais X and Y
NX, NA = X.shape# NA is the number of features and NX the number of data cases.
F = zeros(Y.shape, dtype=float32)
feats =]
betas =[]
for _in xrange(100):
U = Y-F# compute residuals
minerr = 0
minind = -1
for ain xrange(NA
for b in arange(-1, 1, .2):
err = sum((U-b*X[:,a])**2)
if err < minerr or minind < 0 # print \t', err

minerr = err
minind = a
minbeta=Db

feats.append(minind)
betas.append(minbeta)

F = F + minbeta * X[:,minind]




Adaboost

In binary classification, y € {—1,4+1} and the most commonly used loss is
the 0-1 loss. That is, for a classifier sign(F'(x)) € {—1,+1} if the label of
xis y € {—1,41}, the 0-1 loss can be written as a function of the margin

yF(z):

Loi(y, F(z)) = I{yF(z) < 0}.
It is easy to see that the exponential loss function
Leaxp(y, F(x)) = exp (—yF(z))
is an upper bound on Lg; and its population minimizer is half of the log
odds ratio
1 Bl¥ =11X = =)

F(@) = 318 g ——1rx — 7' (1)

AdaBoost
1. Start with Fp(x) = 0;
2. Given F,,_1(x), let

s — exp(—Y; Frm—1(X3)),

(3

h(x,0,,)) = argming Z -uf?@m)I(Y} 7= (X 8)),
i=1

and denote A(-,0,,)’s associated error by

> i i,i’.,fm)j(}:' = h(X"-‘é'm))
Z:?:l _wgw?) s

ETrTm =

Furthermore let

3. Set A
Fm(?r) - En—l(«r) -+ ;D)'Iﬂ.h'('r- gm)-

4. Stop when m = M.

[uby |

The AdaBoost classifier is y = sign(£(x)).




BoosTexter for text classification

In news categorization, a possible termBiis Clinton. A corresponding
weak learner is: If the termill Clinton appears in the document predict
that the document belongst@wswith high confidence.

Formally, denote a possible term by w, and let us define (abusively) w € = to mean that
w occurs in document . Based on the term, we will be interested in weak hypotheses £

which make predictions of the form:

hx, () = { co ifw ¢

crp fw e

[Schapire and Singer, 2000]

Boosting for object detecti

e Given example images (x1,%1),..., (Zn, y») where

y; = 0,1 for negative and positive examples respec-
el —

o Initialize weights w; ; = ,i—n ,% for y; = 0,1 respec-
tively, where m and / are the number of negatives and
positives respectively.

e Fort=1,...,7T:

1. Normalize the weights,

- Wi 4
Wi, r
C X w
so that wy 1s a probability distribution. T 1s a 24x24 plXEl sub-window of an mage
2. For each feature, j. train a classifler i; which 1 if f(.l’!) Py
is restricted to using a single feature. The hj (1.) — p; A P;Y;
error is evaluated with respect to wi, € = 0 otherwise

wy |hy(x:) — yil- e 1
2 wi lhj(2s) — il feature f; parity p; threshold 6,

3. Choose the classifier. h;. with the lowest error €;.

4. Update the weights: 5; = =8 thé
— gl—e; -
W15 = Wi
where ¢; = 0 if example z; 1s classified cor- s

£t
—ct

rectly, e; = 1 otherwise, and f3; = 1
e The final strong classifier 1s:

h(z) = { 1 Yl a(@) 2 53, o

0 otherwise

where a; = log 3- [Viola and Jones, 2001]




Trees for classification and regressior
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[From the book of Hastie, Friedman and Tibshirani]

Regression Trees

Ri(j,s) ={X|X; <s} and Ra(j,s) = {X|X; > s}.

Then we seek the splitting variable j and split point s that solve

min {min E (y; — ¢1)? + min g (i — c2)?|.
7, s c1 co
z; ER1(4,8) r,€R2(7,s)

For any choice j and s, the inner minimization is solved by

¢1 = ave(y;|z; € R1(j,s)) and ¢ = ave(y;|x; € Ra(J,s)).

[From the book of Hastie, Friedman and Tibshirani]




Classification Trees

In a node m, representing a region R,, with N,,, observations,

let
. 1
Pmk = N— Z I(yt = ]f)

e
r, €R,,

the proportion of class & observations in node m.

Misclassification error: N 2icr,, LWi k(M) =1 = Pruge(m)-
o A K - .
Gini index: Zk,;ékf PmkDPmk’ = Zkzl pmk(]- - pmk)-
: K - .
Cross-entropy or deviance: —3 ;" | Pk 108 P

[From the book of Hastie, Friedman and Tibshirani]

Random Forests

Algorithm 15.1 Random Forest for Regression or Classification.

1. Forb=1 to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree 7T} to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size 11,,;, 1s reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.

iii. Split the node into two daughter nodes.
2. Output the ensemble of trees {73},
To make a prediction at a new point x:
Regression: ]‘r‘?(z) = % Z,‘il Tu(z).

Classification: Let ¢ »(x) be the class prediction of the bth random-forest
tree. Then C'lj?(:f:) = magority vote {C‘g—,(,r)}‘lg :

[From the book of Hastie, Friedman and Tibshirani]




Random Forests and the Kinect

depth image = body parts = 3D joint proposals

[Jamie Shotton et al 2011]

Random Forests and the Kinect

Lesson 1Use computer graphics to generate plenty of data.

- ™ . .
ﬁ, AR
/’ ’ &\‘v. ‘\“‘5

real (test)

synthetic (train & test)

[Jamie Shotton et al 2011]




[lason Oikonomidis et al 2011]




