
CPSC540

Nando de Freitas
November, 2011
University of British Columbia

Gaussian Processes, Active Learning,

Bandits and Bayesian Optimization

Functional regression with GPs

Sampling from prior P(f)
from __future__ import division
import numpy as np
import matplotlib.pyplot as pl

f = lambda x: np.sin(0.9*x).flatten() # The true function we're trying to approximate.

def kernel(a, b):
"""Squared exponential kernel."""
sqdist = np.sum(a**2,1).reshape(-1,1) + np.sum(b**2,1) - 2*np.dot(a, b.T)
return np.exp(-.5 * sqdist)return np.exp(-.5 * sqdist)

N = 15 # Number of training points.
n = 50 # Number of test points.
s = 0.05 # Noise variance, assumed to be known.

X = np.random.uniform(-5, 5, size=(N,1)) # Random points at which we sample the function.
K = kernel(X, X) # Form the kernel matrix.

draw samples from the prior
L = np.linalg.cholesky(K + 1e-6*np.eye(N)) # L = sqrt (K)
f_prior = np.dot(L, np.random.normal(size=(N,10)))

Other choices of kernels

[Snelson, 2007]

Posterior mean and variance

Active learning with GPs

Sensor placement

[Andreas Krause & Carlos Guestrin]

Kriging

GPs for environmental data

Forecasting commodities

Normalized
Price

[Nicolas Chapados & Yoshua Bengio]

Price

Year Days to Maturity

GP regression

Gaussian noise / likelihood

Zero-mean GP prior

The marginal likelihood (evidence) is Gaussian:

GP regression

Both sets are, by definition, jointly Gaussian:

Train set

Test set

The joint distribution of the measurements is:

GP regression

Using the Schuur complement, the predictive conditional distribution is
Gaussian too:

Posterior predictions
y = f(X) + s*np.random.randn(N) # Obtain noisy evaluations of f at training points X.
Xtest = np.linspace(-5, 5, n).reshape(-1,1) # Points we're going to make predictions at.

compute the mean at our test points.
L = np.linalg.cholesky(K + s*np.eye(N))
Lk = np.linalg.solve(L, kernel(X, Xtest))
mu = np.dot(Lk.T, np.linalg.solve(L, y))

compute the variance at our test points.
K_ = kernel(Xtest, Xtest)K_ = kernel(Xtest, Xtest)
s2 = np.diag(K_) - np.sum(Lk**2, axis=0)
s = np.sqrt(s2)

pl.figure(1)
pl.clf()
pl.plot(X, y, 'r+', ms=20)
pl.plot(Xtest, f(Xtest), 'b-')
pl.gca().fill_between(Xtest.flat, mu-3*s, mu+3*s, color="#dddddd")
pl.plot(Xtest, mu, 'r--', lw=2)
pl.savefig('predictive.png', bbox_inches='tight')
pl.title('Mean predictions plus 3 st.deviations')
pl.axis([-5, 5, -3, 3])

Parameter learning for GPs:
maximum likelihood

For example, we can parameterize the mean and covariance:For example, we can parameterize the mean and covariance:

Multi-armed bandit problem

money!

• What ad to deliver on a webpage?

• What items is the user more likely to click on?

• What dose will make us learn the effects of a drug?

Multi-armed bandit problem

Actions

Reward r(t)

Sequence of trials

• Trade-off between Explorationand Exploitation

• Regret = Player reward – Reward of best action

The full information game

Cumulative Regret Bound:

Problem: Must observe reward for each action!

[Freund & Shapire ‘95]

Partial information game (EXP3)
[Auer et al. ‘95]

Actual unknown function

GP function approximation Next
evaluation

Expected
improvement

Data
points

CPSC 340 22

A
cq

ui
si

ti
on

fu

nc
ti

on

Parameter

Acquisition
functions

Acquisition
functions

Intelligent user interfaces

Automatic algorithm configuration

Problem
instances

Automated Reasoning
about Algorithm Performance

Algorithm
configuration

Algorithm
selection

Domain
expert Algorithms

selection

Performance
Modelling

[Hutter, Hoos & Stützle; AAAI '07]

