
CPSC540

Boltzmann Machines and SatisfiabilityBoltzmann Machines and SatisfiabilityBoltzmann Machines and SatisfiabilityBoltzmann Machines and Satisfiability

Nando de Freitas
October 2011

Boltzmann Machines and SatisfiabilityBoltzmann Machines and SatisfiabilityBoltzmann Machines and SatisfiabilityBoltzmann Machines and Satisfiability

Information, Computation & EnergyInformation, Computation & EnergyInformation, Computation & EnergyInformation, Computation & Energy



Topographic maps

[Rosa, 2002]



“ the x and y coordinates correspond to the spatial location of a rat, which is running around the x and y coordinates correspond to the spatial location of a rat, which is running around the x and y coordinates correspond to the spatial location of a rat, which is running around the x and y coordinates correspond to the spatial location of a rat, which is running around 
freely inside a large box. The black lines in the left figure shows how this particular rat freely inside a large box. The black lines in the left figure shows how this particular rat freely inside a large box. The black lines in the left figure shows how this particular rat freely inside a large box. The black lines in the left figure shows how this particular rat 
explored the box in a fairly haphazard manner. However, an electrode inserted in the ratexplored the box in a fairly haphazard manner. However, an electrode inserted in the ratexplored the box in a fairly haphazard manner. However, an electrode inserted in the ratexplored the box in a fairly haphazard manner. However, an electrode inserted in the rat’s s s s 
subcortex picks up a signal that is anything but chaotic: the responses of said neuron are given subcortex picks up a signal that is anything but chaotic: the responses of said neuron are given subcortex picks up a signal that is anything but chaotic: the responses of said neuron are given subcortex picks up a signal that is anything but chaotic: the responses of said neuron are given 
as red dots in the left figure, while the right figure gives the firing rate distribution (ranging as red dots in the left figure, while the right figure gives the firing rate distribution (ranging as red dots in the left figure, while the right figure gives the firing rate distribution (ranging as red dots in the left figure, while the right figure gives the firing rate distribution (ranging 
from blue for silent and red for the peak rate of responding). Although the rat is running about from blue for silent and red for the peak rate of responding). Although the rat is running about from blue for silent and red for the peak rate of responding). Although the rat is running about from blue for silent and red for the peak rate of responding). Although the rat is running about 
randomly, this neuron is responding in a grid, seemingly coming on an off in response to the randomly, this neuron is responding in a grid, seemingly coming on an off in response to the randomly, this neuron is responding in a grid, seemingly coming on an off in response to the randomly, this neuron is responding in a grid, seemingly coming on an off in response to the 
animalanimalanimalanimal’s spatial location.s spatial location.s spatial location.s spatial location.”

[Hafting et al 2005]

McNaughton et al. Nature Reviews Neuroscience 7, 663–678 (August 2006) 



McNaughton et al. Nature Reviews Neuroscience 7, 663–678 (August 2006) 

Computational Complexity



Re-visiting logic, NP and 2-SAT
Consider the CNF expression S = C1 ∧ . . . ∧ Cm, where each clause Ci is a

disjunction of literals xi,1 ∨ . . .∨ xi,ki defined on propositional variables. When
each clause has two parents at most, the problem is known as 2-SAT.

Parrot =⇒ Bird ¬P ∨B
Bird =⇒ Flies ¬B ∨ F
Flies =⇒ Escapes ¬F ∨E
Flies =⇒ HasWings ¬F ∨H
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CCCC2222 CCCC3333 CCCC4444CCCC1111

SSSS

Re-visiting logic, NP and 2-SAT

Parrot =⇒ Bird ¬P ∨B
Bird =⇒ F lies ¬B ∨ F
Flies =⇒ Escapes ¬F ∨E
Flies =⇒ HasWings ¬F ∨H
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1. Verification : Does (P=1,B=1,F=1,E=1,H=1), i.e. (11111), satisfy  this 2-SAT problem?

2. Verification : Does (10111) satisfy it?

3. Maximization : What is the maximum number of clauses that can be  satisfied?

4. What is the number of possible assignments to (PB FEH)?

5. Counting : How many assignments satisfy this 2-SAT example?



Logic, NP, 2-SAT and Monte Carlo
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Counting : How many assignments satisfy this 2-SAT example
Approximate answer : Use the Monte Carlo Method.

i. Sample P, B, F, E and H by flipping a coin for ea ch variable N times.
ii. For each sample of (PBFEH), check for satisfiabi lity.
iii. The probability of satisfiability, P(S=1), is a pproximated as the 

number of satisfying samples divided by N.
iv. The expected number number of satisfiable samples n = P(S=1) 25.  

From max-2-SAT to Energy
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¬P ∨B −→
¬B ∨ F −→
¬F ∨ E −→
¬F ∨H −→

SSSS

Assume some clauses are harder to 
satisfy than others. Introduce θθθθ to 
weigh importance of clauses.

EEEE

BBBB

PPPP FFFF

HHHH
Ising 
model



From max-2-SAT to Energy
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E = θ1P + θ2B + (θ3 + θ4)F − θ1PB − θ2BF − θ3FE − θ4FH
Let P = x1, B = x2, F = x3, E = x4 and H = x5

The energy can be written as:

E = −
5∑

i=1

bixi −
5∑

i=1

∑

j>i

xiwijxj
∑

i=1

∑

i=1

∑

j>i

In our case:

From max-2-SAT to Energy to Probability

Let us look at the energy of a few configurations, assuming all the θi = 1.
In this case the energy is simply:

E(x1, x2, . . . , x5) = x1 + x2 + 2x3 − x1x2 − x2x3 − x3x4 − x3x5

What is the lowest energy? When is it attained?
What is the maximum energy?
What should the most probable configuration be?



Ising models and the 2nd law of thermodynamics

� The Ising model describes many physical phenomena:

� “ The The The The IsingIsingIsingIsing model can be reinterpreted as a statistical model for the model can be reinterpreted as a statistical model for the model can be reinterpreted as a statistical model for the model can be reinterpreted as a statistical model for the 
motion of atoms. A coarse model is to make spacemotion of atoms. A coarse model is to make spacemotion of atoms. A coarse model is to make spacemotion of atoms. A coarse model is to make space----time a lattice and time a lattice and time a lattice and time a lattice and 
imagine that each position either contains an atom or it doesn’t.imagine that each position either contains an atom or it doesn’t.imagine that each position either contains an atom or it doesn’t.imagine that each position either contains an atom or it doesn’t.”
Wikipedia Ising Model page.

� “ The original motivation for the model was the phenomenon of The original motivation for the model was the phenomenon of The original motivation for the model was the phenomenon of The original motivation for the model was the phenomenon of 
magnetism.magnetism.magnetism.magnetism.”magnetism.magnetism.magnetism.magnetism.”

� Second law of thermodynamics and stability.

On information and energy – Maxwell’s Demon
In this thought experiment, , , , “ an imaginary container is divided into two parts by an imaginary container is divided into two parts by an imaginary container is divided into two parts by an imaginary container is divided into two parts by 
an insulated wall, with a door that can be opened and closed by what came to an insulated wall, with a door that can be opened and closed by what came to an insulated wall, with a door that can be opened and closed by what came to an insulated wall, with a door that can be opened and closed by what came to 
be called be called be called be called “ Maxwell’s Demon”. The hypothetical demon is only able to let the Maxwell’s Demon”. The hypothetical demon is only able to let the Maxwell’s Demon”. The hypothetical demon is only able to let the Maxwell’s Demon”. The hypothetical demon is only able to let the 
“ hot” molecules of gas flow through to a favored side of the chamber, causing hot” molecules of gas flow through to a favored side of the chamber, causing hot” molecules of gas flow through to a favored side of the chamber, causing hot” molecules of gas flow through to a favored side of the chamber, causing 
that side to appear to spontaneously heat up while the other side cools down.that side to appear to spontaneously heat up while the other side cools down.that side to appear to spontaneously heat up while the other side cools down.that side to appear to spontaneously heat up while the other side cools down.”

� Does this violate the 2nd law?

� What is the relation of information and energy?



Hidden variables (features)

Visible (e.g. 4-pixel image)

Restricted Boltzmann Machines

H1

V1

H3

V4

A joint configuration (v,h) of the binary visible and hidden units has an energy

H2

V2 V3

Weighted connections form images

A joint configuration (v,h) of the binary visible and hidden units has an energy
given by the following RBM model:

E(v,h) = −
∑

i∈pixels

bivi −
∑

j∈features

bjhj −
∑

i,j

viwijhj

And hence a Boltzmann probability:

p(v,h) =
1

Z
e−E(v,h)

Distributed representation

Hidden units

1 10 0 0

Learned
weights

Feature vector

4x4 image patch

weights

Insight: We’re assuming edges occur often in nature, but dots don’t
We learn the regular structures in the world



Hidden units

1 10 0 0…
Semantic Hash

image patch

Deep learning (Hinton and collaborators)



Encoding digits
(A) The two-dimensional codes for 500 digits of each class produced by taking the first
two principal components of all 60,000 training images.
(B) The two-dimensional codes found by a784-1000-500-250-2autoencoder.

These 2-dimensional embeddings of images of digits 
enable us to make predictions (classification)

In the binary case where v ∈ {0, 1}D and h ∈ {0, 1}K the energy
function can be expressed as:

E(v, h,W ) = −
D∑

i=1

K∑

j=1

viWijhj −
D∑

i=1

vibi −
K∑

j=1

hjbj.

The probabilities of each node can be easily obtained.

p(v = 1|h,W ) = sigmoid




K∑
W h + b


p(vi = 1|h,W ) = sigmoid


∑

j=1

Wijhj + bi




p(hj = 1|v,W ) = sigmoid

(
D∑

i=1

Wijvi + bj

)
,

where sigmoid(a) = 1
1+exp(−a)

. The model is therefore easy to sam-

ple: One simply flips K coins for the hidden units and D coins for
the visible units.



1. Sample hidden units h̃n from p(h|vn,W
(t)).

2. Sample imaginary data ṽn from p(v|h̃n,W
(t)).

3. Sample hidden units again
˜̃
hn from p(h|ṽn,W

(t)).

Contrastive divergence learning

˜̃
|˜

4. Update the parameters:

W
(t+1)
dk = W

(t)
dk + η(t)

[
1

N

N∑

n=1

vdnh̃kn −
1

N

N∑

n=1

ṽdn
˜̃
hkn

]

5. Increase t to t+ 1 and go to step 2.

Associative memory

Example 2: Say the alphabet, …. 
backward 



Hopfield models

Hopfield models



Hopfield models (systems of ODEs)

Hopfield models (systems of ODEs)



Quantum computing (D-Wave) 


