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Thalamus (LGN) serves strategic role in

Optic tract

Hubel, 1995
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[Rosa, 2002]




“the x and y coordinates correspond to the spatial location of a rat, which is running around
freely inside a large box. The black lines in the left figure shows how this particular rat
explored the box in a fairly haphazard manner. However, an electrode inserted in the rat's
subcortex picks up a signal that is anything but chaotic: the responses of said neuron are given
as red dots in the left figure, while the right figure gives the firing rate distribution (ranging
from blue for silent and red for the peak rate of responding). Although the rat is running about
randomly, this neuron is responding in a grid, seemingly coming on an off in response to the
animal's spatial location.”

[Hafting et al 2005]
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b Clockwise motion
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Computational Complexity

NP-Hard

“.NP-Complete
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Re-visiting logic, NP and 2-SAT

Consider the CNF expression S = C; A ... A C,,, where each clause C; is a
disjunction of literals z; 1 V...V x; ;,, defined on propositional variables. When
each clause has two parents at most, the problem is known as 2-SAT.
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Parrot — Bird -PVv B
Bird — Flies -BVF
Flies — Fscapes -FVE
Flies — HasWings —-FV H
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Re-visiting logic, NP and 2-SATararqe<,

Parrot — Bird ¢° -PV B
Bird — Flies C,? BV F
Flies = FEscapes ¢= ~FVE
Flies = HasWings ¢ -FVH
S= G AC AC, ACy

P B F E H ¢, G, S

1. Verification : Does (P=1,B=1,F=1,E=1,H=1), i.e. (11111), satisfy this 2-SAT problem?

S| YeS
2. \Verification : Does (10111) satisfy it?
NO

3. Maximization : What is the maximum number of clauses that can be satisfied?

4. What is the number of possible assignments to (PB~ FEH)? 25

5. Counting : How many assignments satisfy this 2-SAT example?




Logic, NP, 2-SAT and Monte Carlo
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Counting : How many assignments satisfy this 2-SAT example
Approximate answer :Use the Monte Carlo Method.

I. Sample P, B, F, E and H by flipping a coin for ea  ch variable N times.

ii. For each sample of (PBFEH), check for satisfiabi lity.

lii. The probability of satisfiability, P(S=1),isa  pproximated as the
number of satisfying samples divided by N.

Iv. The expected number number of satisfiable samples n=P(S=1) 25.

From max-2-SAT to Energy
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Assume some clauses are harder tp _0,P8 -0, BE - Oz FE
satisfy than others. Introducef to
weigh importance of clauses. - 04 [

Ising
model /




From max-2-SAT to Energy

E=0,P 46,8+ (03 +0,)F — 0,PB — §,BF — 0, FE — 0,FH
Let P=x1,B=a29,F =23, F =24 and H = x5
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From max-2-SAT to Energy to Probability

Let us look at the energy of a few configurations, assuming all the 6; = 1.
In this case the energy is simply:

< E(z1,22,...,05) = x1 + T2 + 223 — T1T2 — ToT3 — T3T4 — T3T5

What is the lowest energy? When is it attained?
What is the maximum energy?
What should the most probable configuration be?
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Ising models and the'®law of thermodynamics

O The Ising model describes many physical phenomena:

U “ The Ising model can be reinterpreted as a statistical model for the
motion of atoms. A coarse model is to make space-time a lattice and
imagine that each position either contains an atom or it doesn’t.”
Wikipedia Ising Model page.

U “ The original motivation for the model was the phenomenon of
magnetism.”

Q4 Second law of thermodynamics and stability.
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On information and energy — Maxwell's Demon

In this thought experiment, “ an imaginary container is divided into two parts by
an insulated wall, with a door that can be opened and closed by what came to
be called “ Maxwell’s Demon”. The hypothetical demon is only able to let the

“hot” molecules of gas flow through to a favored side of the chamber, causing
that side to appear to spontaneously heat up while the other side cools down.”

O Does this violate the ™ law?

U What is the relation of information and energy?




Restricted Boltzmann Machines

Hidden variables (features)

Weighted connections form images

Visible (e.g. 4-pixel image)

A joint configuration (v, h) of the binary visible and hidden units has an energy
given by the following RBM model:

E(V, h) = — Z bivi — Z bjhj — Zviwijhj
4,J

i€pizels JE features

And hence a Boltzmann probability:

1 — v
p(v,h) = —e B

Distributed representation

I 7 &2 N =

Feature vector 1 0 1 0 0
/ |

Learned
weights

Insight: We're assuming edges occur often in nature, bigt don’t -
We learn the regular structures in the w

Hidden units

4x4 image patch




Semantic Hash
1 0 1 0
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image patch
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Pretraining Unrolling Fine-tuning




Encoding digits

(A) The two-dimensional codes for 500 digits of each class produced by taig the first

two principal components of all 60,000 training images.
(B) The two-dimensional codes found by &84-1000-500-250-autoencoder.

CENDO BN =D

These 2-dimensional embeddings of images of digits
enable us to make predictions (classification)

In the binary case where v € {0,1}” and h € {0,1}" the energy
function can be expressed as:

D K D K
E(U, ]'L, W) = — Z ZviI/Vijhj — szbz — Z hjbj.
i=1 j=1

i=1j=1

The probabilities of each node can be easily obtained.

K
p(vi = 1|h, W) = sigmoid | > Wi;h; +b;
j=1

D
p(h; = 1jv, W) = sigmoid | > Wi;v; + bj> :
i=1

where sigmoid(a) = : 7 The model is therefore easy to sam-

1+exp(—a
ple: One simply flips K coins for the hidden units and D coins for

the visible units.




Contrastive divergence learning

1. Sample hidden units &, from p(k|v,, W®).
2. Sample imaginary data v,, from p(v\lfz\;, W®).
3. Sample hidden units again h,, from p(h|v,, W®).

4. Update the parameters: Pea\ Confab ulect iom
data

X - 1 A=
chli+1) — chlt{:) + 77(t) N Z Udnhkn - N Z Udnhk:n
n=1 n=1

5. Increase t to t + 1 and go to step 2.

Associative memory

Airplane partially | o Retrieved airplane

occluded by clouds

Associative

memory

Example 2: Say the alphabet, ....
backward




Hopfield models
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Basic Neuron Design

Dendrites

e

Axon
Hillock

Myelin

/ Sheath
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Input toi = H; = Z Tijj + I,'.
jti

output V,— VYif > TV, + I, < U;
j#i

- VIif 2 T,V + I, > U,
J#i

Hopfield models

1
E = 3 Z#Z T,ViV; = 2 IV + 2 UiV,
i#j i i

The change AE in E due to changing the state of neuron i by
AV,‘ is

AFE = _[ Z TUVI + I,' - U,‘]AV,‘.
J#i

But according to the algorithm, AV is positive only when the
bracket is positive, and similarly for the negative case. Thus
any change in E under the algorithm is negative. E is bound-
ed, so the iteration of the algorithm must lead to stable states
that do not further change with time.




Hopfield models (systems of ODES)

In a biological system, u; will lag behind the instantaneous
outputs V; of the other cells because of the input capacitance
C of the cell membranes, the transmembrane resistance R,
and the finite lmpedance T;' between the output V; and the
cell body of cell i. Thus there is a resistance-— capac1tance
(RC) charging equation that determines the rate of change of

U;.

Cildu;/d) = Z T,V; — w/Ri + I,

i = 8i I(V)

Hopfield models (systems of ODES)

Vi
+ Z (1/R) L g '(V)dv + Z V..

dE/dt = 0, dE/dt = 0 — dV;/dt = 0 for all i.

time evolution of the system is a motion in state space that
seeks out minima in E and comes to a stop at such points. E
is a Liapunoyv function for the system.




Quantum computing (D-Wave)
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