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General guidelines for homeworks:

You are encouraged to discuss the problems with others in the class, but all write-ups are to be done
on your own.
Homework grades will be based not only on getting the “correct answer,” but also on
good writing style and clear presentation of your solution. It is your responsibility to make
sure that the graders can easily follow your line of reasoning.
Try every problem. Even if you can’t solve the problem, you will receive partial credit for explaining
why you got stuck on a promising line of attack. More importantly, you will get valuable feedback
that will help you learn the material.
Please acknowledge the people with whom you discussed the problems and what sources you used
to help you solve the problem (e.g. books from the library). This won’t affect your grade but is
important as academic honesty.
When dealing with python exercises, please attach a printout with all your code and
show your results clearly.



1. Logistic regression derivations Derive the expressions, shown in class, for the gradient and Hessian
of the negative log-likelihood of the logistic regression model.



2. Logistic regression implementation

In this question you will implement logistic regression in order to classify emails as spam or not spam.
The dataset you will use for this problem consists of 4601 labelled emails along with 57 features. After
downloading the data from the course website, load the data using

# load the data.

X = np.loadtxt(’spambase.data’, delimiter=’,’, skiprows=1)

# split X/y and add a constant column to X.

y = X[:,-1]

X = X[:,:-1]

X = np.c_[np.ones(X.shape[0]), X]

Here X consists of the 57 features and an additional constant feature to act as the bias and y consists
of a label for each email, where yi = 1 means that the email is spam. Next, split the data into a test
and training set, using the first 4000 elements as our training set.

Xtrain, Xtest = X[0:4000], X[4000:]

ytrain, ytest = y[0:4000], y[4000:]

Now, implement a logistic regression solver using iteratively reweighted least squares using the following
code stub:

def irls(X, y):

theta = np.zeros(X.shape[1])

theta_ = np.inf

while max(abs(theta-theta_)) > 1e-6:

theta_ = theta.copy()

????

return theta

What feature is most indicative of an email not being spam? Note: the label for feature i is given by
names[i] where

names = open(’spambase.data’).readline().split(’,’)

If we use a cutoff of .5, what is the misclassification rate of the training set and of the test set?



3. Convolution of two Gaussians

Prove the following statement about the convolution of two Gaussians:

p(y|X) =

∫
N (y|Xθ + θ0,Σy)N (θ|µθ,Σθ)dθ

.

.

.

= N (y|Xµθ + θ0,Σy + XΣθX
T )

Hint: Create the vector z = [y θ]T , group the exponents of the prior and likelihood so that you have
a multivariate Gaussian in terms of z. This will enable you to know the mean and inverse covariance
of z. However, what you need is the covariance in order to be able to read off the marginal distribution
of y using the definitions of mean and Covariance of a multivariate Gaussian. To get an expression for
the covariance, in terms of the 4 blocks of the inverse covariance, use the Schur Complement (see next
page and Wikipedia derivation).



Consider a general partitioned matrix

M =

(
E F
G H

)
where we assume E and H are invertible. We have

M−1 =

(
(M/H)−1 −(M/H)−1FH−1

−H−1G(M/H)−1 H−1 + H−1G(M/H)−1FH−1

)
=

(
E−1 + E−1F(M/E)−1GE−1 −E−1F(M/E)−1

−(M/E)−1GE−1 (M/E)−1

)
where

M/H := E− FH−1G

M/E := H−GE−1F

We say that M/H is the Schur complement of M wrt H. This result is useful for very fast matrix
inversion via low rank updates.

Now, Suppose x = [x1 x2]T is jointly Gaussian with parameters

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
Then, p(x2) is obtained by extracting the rows and columns from µ and Σ corresponding to x2 (using
the definitions of mean and Covariance of a multivariate Gaussian):

p(x2) = N (x2|µ2,Σ22)

The Schur complement allows us to derive the conditional distribution p(x1|x2):

p(x1|x2) = N (x1|µ1|2,Σ1|2)

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2)

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21

In class, we completed squares to get this result, but it can also be derived via the Schur complement
(though the derivation is longer and more tedious). However, once we know this result, we can use it
anytime we need to quickly derive other techniques, such as Kalman filtering and Gaussian processes.


