
CPSC 540: Machine Learning

Nando de Freitas, Eric Brochu and Matt Hoffman

1

Introduction

The purpose of machine learning is to enable machines to automatically
understand data and, as a result, make useful predictions. By under-
standing, we mean that such machines will be able to derive abstrac-
tions from the data. We will refer to these abstractions as patterns or
features . Some of the features will be embedded in structures (e.g. clus- FEATURES

ters, hierarchies, recursions, associations and other relations) to form
complex features. Ideally, we would like to learn such embeddings and
structures from data.

The quality of the features will be measured in terms of how well the
machine can solve predictive tasks, such as inferring missing data, fore-
casting into the future, making decisions, detecting anomalies, creating
summaries and classifying data instances. Another important desider- PREDICTION

ata is for the complex features to be transferable. That is, after learning
structures in one domain, we would like to use those structures to ac-
celerate learning in other domains. This is often referred to as transfer , TRANSFER

LEARNINGmulti-task or self-taught learning. As a toy illustration, someone living
in an isolated game park in Southern Africa would most likely learn that
“fangs” are features of “dangerous animals”. Now imagine that person
leaving Africa for the first time and encountering a bear in Vancouver.
The learned features would most likely trigger the “dangerous animal”
association.

Many believe that we will eventually build learning machines that
can match and outperform humans in complex tasks such as perception,
motor control and probabilistic reasoning. The impact of this research
program in science, industry and society will be very profound and
lasting. For the time being, humans and other animals, still outper-
form machines in most of these tasks. For this reason, we often look
at biological systems for inspiration to design better models and algo-
rithms.

Machine learning is a fast growing field, which has already made
substantial, and key, contributions to computational biology, search
engines and recommender systems, credit scoring systems, machine vi-
sion systems, entertainment games and many other areas of human
endeavor. We’ve only started to see the impact of machine learning in
industry. A curious fact is that most humans seem oblivious to this. For

1

2 Introduction

example, personalized recommendation systems (such as Amazon, Zite
and Netflix) learn users tastes and habits. Despite huge media coverage
of these services, only a few blogs seem to have noted the significance
of the fact that these are machines learning from humans. The title of
one of these blogs is “the quiet rise of machine learning”.

The rise of machine learning has coincided with great advances in
computing and memory systems and with another widely discussed
phenomenon: big data . Machine learning systems have become essen-BIG DATA

tial because our ability to acquire and store data has surpassed our
ability to understand it. According to a study reported in the Febru-
ary 27th 2010 issue of The Economist, a typical individual in North
America is bombarded with 34 Gigabytes of information at home per
day. (In comparison, a typical two hour film can be compressed to 1
to 2 Gigabytes.) We are swamped with a deluge of data, which creates
enormous research and business opportunities, but also new threats.
It impacts medicine and health-care, our understanding of mind and
intelligence, supply-chain management, privacy, public policy, and our
capacity to improve energy usage and manage our natural resources.

I should note that this rise has only been quiet in the general public.
There is a huge demand at present in industry for skilled machine
learning professionals.

2

Bringing Order to the Web:
Information Retrieval with Python

This introductory chapter has two purposes. First, to familiarize you
with Python. Second, to introduce you to the problem of ranking web-
pages — a key problem faced by search engines.

The chapter will quickly give you enough Python to get you through
the first couple of weeks. This is not nearly enough for the later exer-
cises in this book, and it is expected you will at the very least work
through the relevant portions of the Python tutorial at python.org
(which is excellent) and the NumPy tutorial at scipy.org (which is
somewhat less excellent).

2.1 Importing

Python definitions (of, for example, classes, functions and submodules)
are contained in modules, which are contained in files of the form *.py. PYTHON

MODULESTo import modules into Python, use the import command. The fol-
lowing instruction

>>> import string

will import the string module, for string processing. You can then access
definitions like this:

>>> string.lower(’This is a Python string.’)
this is a python string

You can also import definitions from modules directly, without im-
porting the rest of the module using the from keyword:

>>> from string import lower
>>> lower("This, too, is a Python string.")
this, too, is a python string.

or even:

>>> from string import *
>>> swapcase("Strings can use ’double-quotes’, too.")
sTRINGS CAN USE ’DOUBLE-QUOTES’, TOO.

3

4 Bringing Order to the Web: Information Retrieval with Python

2.2 Containers

Python has a variety of containers built-in, and there are two important
ones we will be importing from NumPy.

The built-in containers that are immediately relevant are lists, sets
and dicts.

Lists are mutable, heterogeneous sequences. You can create lists byPYTHON LISTS

using list(), but there is also a special syntax: []. In the Python
interpreter, you can always see the value of a variable simply by typing
the variable name.

>>> mylist = [100,200,300]
>>> mylist[1]
200
>>> a, b, c = mylist
>>> a
100
>>> b
200

You can also get ranges and slices of a list using the [start:end:step]
operator. Negative numbers count the array from the end.SLICES

>>> r = range(10)
>>> r
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> r[:3]
[0, 1, 2]
>>> r[2:5]
[2, 3, 4]
>>> r[5:2:-1]
[5, 4, 3]
>>> r[1::2]
[1, 3, 5, 7, 9]

Now try the following commands, and variations until you are com-
fortable with how lists work.

>>> mylist.append(’you can mix data types in a list’)
>>> mylist
[100, 200, 300, ’you can mix data types in a list’]
>>> mylist[2] /= 100
>>> mylist.sort()
>>> mylist
[3,100,200,’you can mix data types in a list’]
>>> mylist.extend([’add’, ’another’, ’list’])
>>> mylist[1:3]
[100,200]
>>> mylist[:3]
[3,100,200]
>>> mylist[-1]
[’list’]

Tuples are immutable sequences. They are very much like lists, exceptPYTHON

TUPLES that their contents can’t be changed after being created (actually, it’s

2.2 Containers 5

a little more complicated than that, but we won’t get into that right
now). This is necessary if you want to use a sequence as the key for
a hash, and useful at other times. They can be created with the ()
syntax.

>>> mytuple = (12, 3, 4)
>>> mytuple[1]
3
>>> mytuple[1] = 10

TypeError Traceback (most

recent call last)

/Users/eric/Dropbox/bookrepository/<ipython console> in <
module>()

TypeError: ’tuple’ object does not support item assignment

Sets are not sequences: You cannot guarantee the order of items PYTHON SETS

added to a set. They also have various set operations defined. All items
in a set are unique.

>>> setA = set([1,2,3])
>>> setB = set()
>>> setB.add(3)
>>> setB.add(’a string’)
>>> setA & setB
set([3])
>>> setA | setB
set([1, 2, 3, ’a string’])
>>> setA - setB
set([1, 2])

Dicts are maps from keys to values. Like lists, they have a special PYTHON DICTS

syntax: {}. Like sets, the order is not guaranteed and keys must be
unique.

>>> d = {’one’: 1, ’two’: 2}
>>> d[’one’]
>>> d[’three’] = 3
>>> d[’many’] = [1, 10, 100]
>>> ’three’ in d
True
>>> 3 in d
False
>>> d.keys()
[’many’, ’three’, ’two’, ’one’]
>>> d.values()
[[1, 2, 3], 3, 2, 1]
>>> d.items()
[(’many’, [1, 2, 3]), (’three’, 3), (’two’, 2), (’one’, 1)]

Needless to say, there is much, much more you can do with these data
structures, as well as more exotic ones like defaultdicts and frozensets.

6 Bringing Order to the Web: Information Retrieval with Python

2.3 Control flow

Python uses indentation for code blocks. You can use any number of
tabs or spaces to set off a block, but your life is likely to be much easier
if you consistently use 4 spaces.

For the remainder of the tutorial, the results aren’t shown in the code
snippets. Just remember, you can always see the value of a variable by
typing it in the interpreter.

>>> x = 10
>>> if x > 5:
... print ’x greater than 5’
>>> else:
... print ’x <= 5’

>>> z = 0
>>> while z < 4:
... print z
... z += 1

>>> mylist = [3,4,5]
>>> for i in mylist:
... print ’value = %d’ % i

Note than unlike some languages, in Python for loops iterate over
containers. While you can use indices:

>>> for ind in range(len(mylist)):
... print ’value =’, mylist[ind]

this is inefficient, unpythonic, and – not always, but often – means
you are doing something wrong. You should probably be using zip(),
enumerate() or the itertools module instead, especially if you
aren’t working with arrays or matrices.

List comprehensions are a fantastically useful way to create lists andLIST COMPRE-

HENSIONS apply map and filter operations. Like list declarations, they use the
[] syntax, but they contain an expression and a for clause instead of
values.

>>> from math import pow
>>> data = [10, 20, 30, 50]
>>> squared = [pow(x, 2) for x in data]
>>> squared
[100, 400, 900, 2500]
>>> filtered = [x for x in data if x > 25]
>>> filtered
[30, 50]
>>> bothed = [x**2 for x in data if x <= 20]
>>> bothed
[100, 400]

2.4 Files and functions 7

Common uses are to construct lists of lists and to initialize dicts.

>>> line = something completely different
>>> pairs = [(x.upper(), len(x)) for x in line.split()]
>>> pairs
[(’SOMETHING’, 9), (’COMPLETELY’, 10), (’DIFFERENT’, 9)]
>>> eless = dict((x, x.replace(’e’,’-’)) for x in line.split

())
>>> eless[’completely’]
’compl-t-ly’

2.4 Files and functions

Python files end with a *.py extension. They can contain definitions,
instructions, or both.

In Python, functions are defined with the def keyword followed by
the arguments in parentheses. The return keyword passes the indi- PYTHON

FUNCTIONScated object back the the caller. Functions can be declared from the
Python session command line, but it is more common to put them in a
file and import them. For example, if this is the content of fdef.py:

def foo(x, y):
print x, ’ˆ’, y
z = x**y
return z

you can call it from the session like this:

>>> from fdef import foo
>>> foo(10, 2)
10 ˆ 2
100
>>> r = [foo(x, 2) for x in range(4)]
0 ˆ 2
1 ˆ 2
2 ˆ 2
3 ˆ 2
>>> r
[0, 1, 4, 9]

If you change the contents of a module, you must reload it. Note
that this will not reload any modules that the file itself imports!

You can also put instructions in a file to run as a script. To run
the script in the session, you can use execfile() (you can also use
import, but in that case, you must reload to run it again). myscript.py:

line = ’and now for something completely different’
for word in line.split():

es = sum([1 for x in word if x==’e’])
print "’%s’ e-count = %d" % (word, es)

8 Bringing Order to the Web: Information Retrieval with Python

can be run like this:

>>> execfile(’myscript.py’)
’and’ e-count = 0
’now’ e-count = 0
’for’ e-count = 0
’something’ e-count = 1
’completely’ e-count = 2
’different’ e-count = 2

2.5 NumPy Arrays

NumPy adds two very powerful containers: arrays and matrices. Ma-PYTHON

ARRAYS trices are more restrictive than arrays, but have some nice syntactical
advantages that make them behave more like mathematical matrices.
We’ll be using arrays exclusively here – for details on matrices, see the
NumPy website.

In all the remaining code examples, it is assumed you have already
imported NumPy. Note that this adds NumPy overloads for Python
built-ins such as sum() and all().

>>> from numpy import *

Unlike lists, sets and dicts, array elements must all be the same type
(which you can specify, if necessary with the dtype= parameter), and
you cannot easily (or cheaply) resize them, though you can change
individual elements.

>>> A = array([1.2, .2, 2.])
>>> sum(A)
3.4
>>> M = array([[1,2,3],[4,5,6],[7,8,9]], dtype=float)
>>> M
array([[1., 2., 3.],

[4., 5., 6.],
[7., 8., 9.]])

>>> M.transpose()
array([[1., 4., 7.],

[2., 5., 8.],
[3., 6., 9.]])

>>> A.shape
(3,)
>>> M.shape
(3, 3)

The arithmetic operations (*, -, +, /, **) are defined as elementwise
operators between arrays and sequences (including other arrays), or be-
tween arrays and scalars. For other linear algebra operations, NumPy
has functions defined – dot() and outer() for inner and outer prod-
ucts, for example.

2.5 NumPy Arrays 9

>>> A + 5.0
array([6.2, 5.2, 7.])
>>> A + [1, 2, 3]
array([2.2, 2.2, 5.])
>>> A**2
array([1.44, 0.04, 4.])
>>> dot(M, A)
array([7.6, 17.8, 28.])
>>> outer(A, [10, 20, 30])
array([[12., 24., 36.],

[2., 4., 6.],
[20., 40., 60.]])

>>> A / 2.0
array([0.6, 0.1, 1.])

These operations all create new arrays. You can also use *=, +=, etc
for in-place operations, which will overwrite the existing array with new
values.

The : symbol can be used to get rows, columns and ranges of an
array. You can also pass lists of indices with []. Note that these oper-
ations also return arrays.

>>> M[0,1]
2.0
>>> M[:,1]
array([2., 5., 8.])
>>> M[1:2,:]
array([[1., 2., 3.],

[4., 5., 6.]])
>>> M[[0,2],:]
array([[1., 2., 3.],

[7., 8., 9.]])
>>> A[::-1]
array([2. , 0.2, 1.2])

Also note that rank-1 arrays are sequences, not vectors. For vector
operations, NumPy will automatically transpose rank-1 arrays as nec-
essary (you can use .T as shorthand for .transpose()).

>>> all(M==M.T)
False
>>> all(A==A.T)
True
>>> dot(M, A)
array([3.8, 8.9, 14.])
>>> dot(M, A.T)
array([3.8, 8.9, 14.])

You can create arrays with handy functions including arange() CREATING

ARRAYSand linspace() (create arrays over ranges and intervals), as well
as zeros() and ones() (create zero- or one-initialized arrays) and
eye() (create the identity matrix). There are also more advanced tools,
such as fromfunction() and fromfile().

10 Bringing Order to the Web: Information Retrieval with Python

>>> arange(0, 8)
array([3, 4, 5, 6, 7])
>>> arange(3, 8, 2)
array([3, 5, 7])
>>> linspace(-20,20,5)
array([-20., -10., 0., 10., 20.])
>>> ones((2,2))
array([[1., 1.],

[1., 1.]])
>>> zeros(5, dtype=int)
array([0, 0, 0, 0, 0])
>>> eye(3)
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> fromfunction(multiply, (3,3))
array([[0., 0., 0.],

[0., 1., 2.],
[0., 2., 4.]])

You can change the shape (and rank) of an array (a -1 value indicates
NumPy should use whatever value is required for the data):

>>> Z = arange(8)
>>> Z
array([0, 1, 2, 3, 4, 5, 6, 7])
>>> Z.shape
(8,)
>>> Z.shape = (2,4)
>>> Z
array([[0, 1, 2, 3],

[4, 5, 6, 7]])
>>> Z.reshape(2,2,-1)
array([[[0, 1],

[2, 3]],

[[4, 5],
[6, 7]]])

>>> Z[:,0,0]
array([0, 4])

As you may have noticed in the examples, if you mix arrays of differ-
ent data types, NumPy automatically performs upcasting for the returnUPCASTING

values. That is, the more precise type will be chosen:

>>> B = array([True, False, True], dtype=bool)
>>> F = array([0.1, 1., 10.], dtype=float)
>>> I = array([3, 4, 5], dtype=int)
>>> B * I
array([3, 0, 5])
>>> (B * I).dtype
dtype(’int32’)
>>> I * F
array([0.3, 4. , 50.])
>>> (I * F).dtype
dtype(’float32’)

2.6 Building a link graph from HTML files 11

NumPy is intended to be relatively high-performance, so it only
copies data when absolutely necessary. When you use assignments or COPYING

ARRAYSslices, you create a new reference or array object (respectively), but it
points at the same data. This can be confusing to new users, and is
different from how Python handles list slices, so watch out!

>>> X = arange(8)
>>> X
array([0, 1, 2, 3, 4, 5, 6, 7])
>>> Y = X
>>> Y[0] = -5
>>> X
array([-5, 1, 2, 3, 4, 5, 6, 7]) # !
>>> Z = X[2:5]
>>> Z[0] = 100
>>> X
array([-5, 1, 100, 3, 4, 5, 6, 7]) # !!!

To make a copy of the data in an array, use .copy().

>>> X = arange(8)
>>> Z = X[2:5].copy()
>>> Z[0] = 100
>>> Z
array([100, 3, 4])
>>> X
array([0, 1, 2, 3, 4, 5, 6, 7])

2.6 Building a link graph from HTML files

Now that we’ve learned a few of the basics, let’s do some actual Python
programming.

First, we’re going to read several HTML files and extract all the links.
Download the data from the course website: cs.ubc.ca/∼nando/ To
make it easy, we’re not going to worry too much about line breaks or
proper HTML parsing right now.

>>> links = {}
>>> fnames = [’angelinajolie.html’, ’bradpitt.html’,
’jenniferaniston.html’, ’jonvoight.html’,
’martinscorcese.html’, ’robertdeniro.html’]

>>> for file in fnames:
... links[file] = []
... f = open(file)
... for line in f.readlines():
... while True:
... p = line.partition(’<a href="http://’)[2]
... if p==’’:
... break
... url, _, line = p.partition(’\">’)
... links[file].append(url)
... f.close()

12 Bringing Order to the Web: Information Retrieval with Python

open() creates a file object for reading. The string partition()
method returns a list of three substrings: before, ‘during’, and after the
partition string. If the partition string was not found, the second and
third strings will be empty, and we can skip this line.

After this, we will have a dict called links for which the keys are
filenames, and the values are the links in the files. Now we want to
make this into a graph using the NetworkX library.

>>> import networkx as nx
>>> DG = nx.DiGraph()
>>> DG.add_nodes_from(fnames)
>>> edges = []
>>> for key, values in links.iteritems():
... eweight = {}
... for v in values:
... if v in eweight:
... eweight[v] += 1
... else:
... eweight[v] = 1
... for succ, weight in eweight.iteritems():
... edges.append([key, succ, {’weight’:weight}])

>>> DG.add_edges_from(edges)

We have now told the DiGraph object about its edges and nodes.
We can visualize the graph with the matplotlib plotting library:MATPLOTLIB

>>> import matplotlib.pyplot as plt
>>> plt.figure(figsize=(9,9))
>>> pos=nx.spring_layout(DG,iterations=10)
>>> nx.draw(DG,pos,node_size=0,alpha=0.4,edge_color=’r’,

font_size=16)
>>> plt.savefig("link_graph.png")
>>> plt.show()

If you have followed all the steps correctly, you should be able to see
the plot of Figure 2.1 on your screen.

In the next part of this tutorial, we will be using this graph, so let’s
save it to disk. In Python, often the easiest way to write data is to use
pickle, which can read and write most Python types.PICKLE

>>> import cPickle as pickle
>>> pickle.dump(DG, open(’DG.pkl’,’w’))

This will write the object out to disk in the file DG.pkl. You can
reload it later, but you will also need to re-import the networkx module
to interact with it.

>>> import cPickle as pickle
>>> import networkx as nx
>>> DG = pickle.load(open(’DG.pkl’))

2.7 Ranking the webpages with pagerank 13

Figure 2.1

Webpage

link-graph.

2.7 Ranking the webpages with pagerank

The webpage link-graph of Figure 2.1, where the nodes represent the
webpages and the arrows the links between them, can be mapped to a
transition matrix T. This mapping is actually fairly easy to implement TRANSITION

MATRIXusing the Python data structures we have just learned, but you may
need to look at the results of each step to understand how it works.

First, we make an empty transition matrix of size Nx-by-Nx, where
Nx is the number of pages.

>>> from numpy import zeros
>>> NX = len(fnames)
>>> T = matrix(zeros((NX, NX)))

We need a way to match the filenames to the indices of the matrix.
We will do this with a dict. We can populate a new dict by giving it
(key, value) pairs. Since we want each key to map to an index of the
key’s position in the original list, we can use Python’s enumerate()
function, which iterates over a sequence, returning values and indices.

14 Bringing Order to the Web: Information Retrieval with Python

>>> f2i = dict((fn, i) for i, fn in enumerate(fnames))
>>> f2i
{’angelinajolie.html’: 0,
’bradpitt.html’: 1,
’jenniferaniston.html’: 2,
’jonvoight.html’: 3,
’martinscorcese.html’: 4,
’robertdeniro.html’: 5}

>>> f2i[’jonvoight.html’]
3

Now, we can iterate over the DiGraph’s adjacency data to fill in the
transition matrix, using the predecessors as rows and the successors as
columns.

>>> for predecessor, successors in DG.adj.iteritems():
... for s, edata in successors.iteritems():
... T[f2i[predecessor], f2i[s]] = edata[’weight’]
>>> T
matrix([[0., 1., 0., 1., 0., 0.],

[2., 0., 1., 0., 1., 0.],
[0., 0., 0., 0., 0., 0.],
[2., 1., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 1., 0.]])

Next, we add a matrix of uniform probability E to T:

L = T + εE

where ε is a small scalar and E has entries 1/Nx. L is then normalized
so that its rows add up to 1; resulting in a new matrix G. That is∑

j

Gi,j = 1 ∀i.

NumPy contains a module named random, which has a function also
called random, which returns random numbers between 0 and 1, for an
array of given size and dimensions. We can use this to create the L and
G matrices.

>>> from numpy.random import random
>>> from numpy import sum, ones
>>> epsilon = .01
>>> E = ones(T.shape)/NX
>>> L = T + epsilon * E
>>> G = matrix(zeros(L.shape))
>>> for i in xrange(NX):
... G[i,:] = L[i,:] / sum(L[i,:])

G is a stochastic matrix, also known as a Markov chain transitionMARKOV CHAIN

matrix. This class of matrices has been deeply studied in mathematics.STOCHASTIC

MATRIX For example, it is known that given any initial vector π, whose entries
add up to 1, successive multiplication by the matrix G results in a

2.7 Ranking the webpages with pagerank 15

vector p whose entries remain invariant, and which add up to 1. In
mathematical terms:

lim
N→∞

πTLN = pT

For this to happen, the Perron-Frobenius Theorem of linear algebra PERRON-

FROBENIUS

THEOREM
tells us that the stochastic transition matrix must obey the following
properties:

1. Irreducibility : For any state (webpage), there is a positive proba-
bility of visiting all other states. That is, the matrix L cannot be
reduced to block-diagonal form. This is equivalent to requiring that
the transition graph be connected. If a webpage is disconnected from
the graph, then the random surfer will never be able to find it by
simply following links.

2. Aperiodicity : The Markov chain should not get trapped in cycles.
Why? What happens when

G =

(
0 1
1 0

)
?

Try a few iterations with say π = (1/3, 2/3).

Our desire to satisfy these properties is what drove us to add a small
random perturbation matrix εE to T in order to form the stochastic
matrix G. We want our algorithm to converge to the same p for any
initial vector π.

In the perhaps more intuitive web setting, the random perturbation
can also be thought of as a way of “teleporting” to another webpage
via a mechanism other than links (say, via personal bookmarks).

This is all wonderful mathematically, but you’re probably asking
yourself what is the meaning of p? To answer this question, let us
enter the world of information retrieval and search engines.

In information retrieval, we are interested in estimating the relevance INFORMATION

RETRIEVALof each webpage. To make the argument more concrete, it is reasonable
RELEVANCEto think of relevance as the probability of a webpage being visited by

someone surfing the web randomly. In this model, the random surfer
visits a webpage and clicks on one of the links in that page at random. RANDOM

SURFER MODELHence, if a page has more links to a second page, this second page is
more likely to be selected by the random surfer.

Intuitively, if a person is clicking on links at random, it is more likely
that she will end up at cnn.com than at cs.ubc.ca.

The popular search engine Google harnessed this intuition to de- GOOGLE

sign an automatic algorithm for ranking webpages called pagerank.
Pagerank follows exactly the process we’ve described in this section. PAGERANK

It computes the stationary vector p by successive vector-matrix mul-
tiplication (in sparse form of course because G has billions of rows

16 Bringing Order to the Web: Information Retrieval with Python

and columns!). The entries of p correspond to the probabilities of each
webpage being visited by the random surfer.

In Python, pagerank proceeds as follows:

>>> PI = random(NX)
>>> PI /= sum(PI)
>>> R = PI
>>> for _ in xrange(100):
... R = dot(R, G)

How quickly does this algorithm converge? What determines the rate
of convergence? Again matrix algebra and spectral theory provide the
answers, but we shall not explore these in this chapter.

Empirically, however, we can plot the individual entries of the rank
vector on the vertical axis and the number of iterations on the hori-
zontal axis. This allows us to see how the algorithm is converging and
determine how many iterations are necessary.

>>> import matplotlib.pyplot as plt
>>> evolution = [dot(PI, G**i) for i in xrange(1, 20)]
>>> plt.figure()
>>> for i in xrange(NX):
>>> plt.plot([step[0,i] for step in evolution],

label=fnames[i], lw=2)
>>> plt.draw()

Note that because dot(PI, G**i) returns a matrix, we must spec-
ify the row and column of step, even though the row is always 0.

Matplotlib is a powerful plotting library with many different tools.
plot() creates line and scatter plots. The label parameter allows us
to generate legends to interpret the plot. We can also add titles and
axis labels. The syntax is (intentionally) very similar to MATLAB’s
plotting syntax.

>>> plt.title(’rank vs iterations’)
>>> plt.xlabel(’iterations’)
>>> plt.ylabel(’rank’)
>>> plt.legend()
>>> plt.draw()

The resulting plot is shown in Figure 2.2. Do the ranks of our celebrities
seem reasonable given their link-graph?

What are the eigenvalues of G and G1000? What is happening to the
eigenvalues of GN as N increases? How do you think this might relate
to the convergence result we mentioned earlier in this section?

>>> from numpy import linalg
>>> linalg.eigvals(G**1000)
array([0.00000000e+00, 1.00000000e+00, 3.20923843e-17,

-3.59103089e-33, 6.44186704e-34, 0.00000000e+00])

2.7 Ranking the webpages with pagerank 17

Figure 2.2

Pagerank applied

to our celebrities

link-graph.

0 5 10 15 20
iterations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

ra
n
k

rank vs iterations

angelinajolie.html
bradpitt.html
jenniferaniston.html
jonvoight.html
martinscorcese.html
robertdeniro.html

It turns our that the Perron Frobenius Theorem, whose proof is out-
side the scope of this book, provides an answer to these questions. In
particular, it states that G has one eigenvalue that is equal to 1. All
other eigenvalues are strictly less than 1 in absolute value. What is
the eigenvector corresponding to the eigenvalue 1? As we increase the
powers of G, which eigenvalue (other than 1) will take longer to vanish?

Now let us turn our attention back to information retrieval. For the
keyword query “acting”, what pages (in order and using exact word KEYWORD

QUERYmatching) does our simple search engine return?
To find this out, we will create a reverse index – this is simply a REVERSE INDEX

mapping that, for a given keyword, returns a list of files in which the
keyword appears, and counts for that keyword. This is another situation
where Python’s data types help us out. To create the reverse index, we
will create a dict, in which each key is a keyword token, and each value
is another dict, which maps files to counts of the keyword. (We could
make this even more concise by using the defaultdict type from the
collections module, but it makes the code slightly harder to follow.)

18 Bringing Order to the Web: Information Retrieval with Python

>>> revind = {}
>>> fnames = [’angelinajolie.html’, ’bradpitt.html’,
’jenniferaniston.html’, ’jonvoight.html’,
’martinscorcese.html’, ’robertdeniro.html’]

>>> for fname in fnames:
... for line in open(fname).readlines():
... for token in line.split():
... if token in revind:
... if fname in revind[token]:
... revind[token][fname] += 1
... else:
... revind[token][fname] = 1
... else:
... revind[token] = {fname: 1}

The split() string method splits a string on the spaces, and returns
a sequence of substrings.

We can now query the reverse index and then sort the results.

>>> revind[’film’]
{’angelinajolie.html’: 3,
’bradpitt.html’: 3,
’jenniferaniston.html’: 1,
’jonvoight.html’: 1,
’martinscorcese.html’: 5,
’robertdeniro.html’: 1}

Now, we wish to sort the results. Python’s sorted() function has an
argument key=, which handles cases where sorting is ambiguous, such
as dict items (that is, we could be sorting on the keys, or the values
and need to tell it which). Without getting into too many details right
now, key asks for a function, which takes as its argument an element
of the sort sequence, and which returns a value for the object which
corresponds to the one we actually want to sort on. Conveniently, that’s
exactly what getPageRank() does.

>>> def getPageRank(fname):
... return R[0,f2i[fname]]

This will return the pagerank of the filename, which is what we
actually want to sort on. Note that because the function is defined in the
command-line environment, functions have access to all the variables
we have already declared in that environment, such as R and f2i.
Functions and methods defined in modules do not (usually) have access
to those variables.

Now, we can pass getPageRank as the value for sort()’s key pa-
rameter. We also pass it the reverse=True parameter, which tells
sort() to sort from highest value to lowest (by default, it sorts low-
to-high)...

Exercises 19

>>> result = revind[’film’].keys()
>>> result
[’robertdeniro.html’,
’angelinajolie.html’,
’martinscorcese.html’,
’jonvoight.html’,
’bradpitt.html’,
’jenniferaniston.html’]

>>> sorted(result, key=getPageRank, reverse=True)
[’angelinajolie.html’,
’bradpitt.html’,
’jonvoight.html’,
’martinscorcese.html’,
’jenniferaniston.html’,
’robertdeniro.html’]

...and we get back our results in a very Google-esque order, with the
highest-ranked page at the top, and the lowest-ranked at the bottom.

If you’ve been typing these commands, you’ve just finished imple-
menting your first search engine. Congratulations!

This is now a good time to try some exercises to practice Python and
learn more about all the exciting things you can do with this language.
The exercises will also allow you to revise fundamentals of probability
and linear algebra.

In hte coding exercises, fill in Python code wherever you see the ???
symbol. Submit your code and plots.

Depending on your interface and settings, you may find that figures
are not updated after plotting. If this is the case, use the draw()
function. If you find you need to clear your figure while coding, you
can use the clf() command.

>>> from matplotlib.pyplot import draw, clf
>>> figure()
>>> plot (...)
>>> draw()
>>> clf()
>>> plot (...)
>>> draw()

Exercises

2.1 Eigenvalues and eigenvectors.

Compute the eigenvalues and eigenvectors of the following matrix by hand

and using NumPy:

A =

 −2 2 −3

2 1 −6

−1 −2 0

Hand in the NumPy code as well as your derivation.

20 Bringing Order to the Web: Information Retrieval with Python

2.2 Plotting one-dimensional Gaussians.

For a one-dimensional Gaussian distribution with a mean µ and variance σ,

the probability density at a point, x, is purely a measure of the point’s distance

from the mean:GAUSSIAN

PROBABILITY

DENSITY

FUNCTION

(PDF)

p(x;µ, σ) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
This function is actually already present in the scipy.stats module, but

we are going to reimplement it as our own function:

>>> from math import sqrt, exp, pi
>>> def gaussianPDF(mu, sigma, x):
... return 1. / sqrt(2. * pi) * ???

We can now plot a one-dimensional Gaussian distribution with µ = 0, σ = 1,

also called a standard normal distribution.

>>> from matplotlib.pylab import *
>>> from numpy import arange
>>> samples = arange(-5., 5., .05)
>>> figure(1)
>>> plot(samples, [??? for x in samples], lw=2.)
>>> grid()

Return a plot showing the standard normal distribution. Also show Gaussians

with two other values of µ and σ, over the same range.

2.3 Plotting two-dimensional Gaussians.

Now, we’re going to see how we can use NumPy arrays to plot two-dimensional

Gaussians. We define µ as a 2-element array of the means of the Gaussian in

the two dimensions. Pretty straightforward. σ, however, becomes a 2-by-2

symmetric covariance matrix, and we acknowledge its new status with a new

symbol: Σ. The diagonal entries of Σ show how much the Gaussian varies

along the axis, and the other entries show how the two dimensions interact.

You can think of the diagonal entries as the “width” of the Gaussian, and the

off-diagonals as the “orientation”.

The PDF of a 2-dimensional Gaussian is:MULTIVARIATE

GAUSSIAN

p(x;µ,Σ) =
1

|2πΣ| 12
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
Let’s implement this function in Python, too. We’re going to import the

NumPy version of exp(), which is designed to work with arrays and ma-

trices. To multiply arrays and matrices in NumPy, use dot().

>>> from numpy import exp, det, dot
>>> def gaussianPDF_2D(mu, Sigma, x):
... d = 1. / sqrt(det(2. * pi * Sigma)) * ???
... return float(d)
>>> Sigma = matrix(’1. 0.; 0. 1.’)
>>> mu = array([0., 0.])
>>> gaussianPDF_2D(mu, Sigma, array([0., 0.]))
???

Exercises 21

Two common ways of plotting 2-dimensional functions are contour and surface

plots. In both cases, we use special meshgrid arrays, which are simply regular

2-D arrays created from 1-D arrays, designed to make it easy to evaluate and

plot a grid.

>>> from numpy import meshgrid, zeros
>>> x = arange(-5., 5., .05)
>>> y = arange(-5., 5., .05)
>>> X, Y = meshgrid(x, y)
>>> x.shape
(200,)
>>> X.shape
(200, 200)
>>> Z = zeros(X.shape)
>>> nx, ny = X.shape
>>> for i in xrange(nx):
... for j in xrange(ny):
... Z[i,j] = gaussianPDF_2D(mu, Sigma,
... array([X[i,j], Y[i,j]]))

>>> figure(2)
>>> contour(X, Y, Z)

3-D plotting of 2-D functions isn’t fully integrated into Matplotlib (and you

must be running version 0.99 or higher), so the syntax isn’t quite as elegant

as contour().

>>> from mpl_toolkits.mplot3d import Axes3D
>>> fig = figure(3)
>>> ax = Axes3D(fig)
>>> ax.plot_surface(X, Y, Z)

Now, given two different Gaussians, plot the sum of the two.

>>> mu1 = array([1.5, 2.])
>>> Sigma1 = matrix(’2. .1; .1 2.’)
>>> mu2 = array([0., -1.])
>>> Sigma2 = matrix(’1. -.5; -.5 1.’)
>>> Z2 = zeros(X.shape)
>>> nx, ny = X.shape
>>> for i in xrange(nx):
... for j in xrange(ny):
... Z2[i,j] = ???
>>> ???

2.4 Image processing.

One of the great things about NumPy/SciPy is that it can work with all kinds

of array data, such as image files, which, after all are just arrays of numbers.

There are several powerful image-processing Python toolkits available, but we

can already get started with NumPy.

First, get a (colour) .PNG image file from your computer or the internet. Now,

you can load the image data into Python (where PATHTOIMAGE is the path

to the image file on your computer).

22 Bringing Order to the Web: Information Retrieval with Python

>>> from numpy import imread, imshow
>>> img = imread(’PATHTOIMAGE’)
>>> figure()
>>> imshow(img)

Now we can create a gallery of altered images using subplot(), a function

for putting several plots into a single one.

>>> from matplotlib.pyplot import subplot
>>> from scipy import ndimage
>>> figure()
>>> subplot(2,2,1)
>>> imshow(img)
>>> subplot(2,2,2)
>>> imshow(ndimage.rotate(img, 90))
>>> subplot(2,2,3)
>>> nored = img.copy()
>>> nored[:,:,0] = zeros(nored[:,:,0].shape)
>>> imshow(nored)
>>> subplot(2,2,4)
>>> onlyred = ???
>>> imshow(onlyred)

The third subplot shows the image with the red channel set to all-zero. For

the last subplot, show an image where all channels except red are all zero.

2.5 Text processing with NLTKNLTK

The Natural Language Toolkit is a Python toolkit for research in natural lan-

guage (ie, everyday speech and writing, as opposed to computer languages). ItNATURAL

LANGUAGE

PROCESSING
has many powerful features and a large set of documents for machine learning,

but right now, we’re just going to use it to improve our reverse index.

To start, we are going to use a smarter tokenizer. In the Pagerank exercise,TOKENIZATION

we use the Python split() method as our tokenizer. This divides a line into

words based on spaces only. While it will successfully find most words, we also

get tokens with punctuation stuck to them.

>>> x = ’This (sentence) has punctuation.’
>>> x.split()
[’This’, ’(sentence)’, ’has’, ’punctuation.’]

NLTK has a number of tokenizers – we’ll be using a proper word tokenizer,

which is the NLTK recommended default.

>>> from nltk import word_tokenize
>>> word_tokenize(x)
[’This’, ’(’, ’sentence’, ’)’, ’has’, ’punctuation’, ’.’]

Another important tool for natural language processing is stemming – this

involves turning words with various prefixes and suffixes – “running”, “runs”,STEMMING

etc – into a common form. To accomplish this, we will use a common stemming

algorithm, the Porter stemmer.

Exercises 23

>>> from nltk.stem.porter import PorterStemmer
>>> stemmer = PorterStemmer()
>>> for word in [’run’, ’running’, ’runs’, ’ran’]:
... print word, ’->’, stemmer.stem(word)
run -> run
running -> run
runs -> run
ran -> ran

Note that “ran” is not converted to “run”. Stemming is purely lexical – it has

no method for knowing common roots, just letters. (This requires lemmati-

zation, which NLTK also supports, but which we won’t be getting into right

now.) LEMMATIZATION

In information retrieval, an important measure of the relevance of a word to

identifying a document is tf-idf (term frequency-inverse document frequency).

This is a score for each document-word pair in a corpus (a collection of doc-

uments) that is high when the word appears frequently in the document but CORPUS

infrequently overall, and low when it appears it many documents – if we want

to identify the topic of a document, a word like “Vancouver” is more relevant

than “the”.

The term frequency of word w in document d is equal to the total number of

times w appears in d, divided by the total number of words in d.

The inverse document frequency of word w is based on the logarithm of the

inverse frequency of the word in the corpus. If the number of documents in the

corpus is D and the number of documents the word appears in is Dw, then

idfw = log
D

1 +Dw

and for w and d, we can compute

tfidfw,d = tfw,didfw

Now, we will use the things we have just learned to compute tf-idf on the web

pages we used in the Pagerank exercise. First, create a reverse index like the

one we used above, except using the NLTK tokenizer and stemmer.

Then, write a tfidf() function that prints, for a given word, the tf-idf score

for the stem of the word in each of the documents it appears in:

24 Bringing Order to the Web: Information Retrieval with Python

>>> from __future__ import division
>>> from math import log
>>> fname_total_words = {}
>>> revind = {}
>>> fnames = [’angelinajolie.html’,

’bradpitt.html’,
’jenniferaniston.html’,
’jonvoight.html’,
’martinscorcese.html’,
’robertdeniro.html’]

>>> for fname in fnames:
... fname_total_words[fname] = 0
... for line in open(fname).readlines():
... ??? revind ???
... ??? fname_total_words ???

>>> def tfidf(revind, fname_total_words, word):
... wstem = stemmer.stem(word)
... if wstem != word:
... print "word ’%s’ stemmed to ’%s’" % (word,

wstem)
... idf = log(len(fnames) / (1 + len(revind[wstem])))
... for fn, count in revind[wstem].iteritems():
... tfidf = idf * ???
... print "\tTF-IDF for ’%s’ = %f" % (fn, tfidf)

>>> tfidf(revind, fname_total_words, ’acting’)
???

>>> tfidf(revind, fname_total_words, ’awards’)
???

>>> tfidf(revind, fname_total_words, ’and’)
???

fname total words is a dict with filenames as keys and total word counts

as values.

The from future import division command makes the division

of integers return a float. As the name implies, this will be the default in a

future version of Python.

2.6 Matrix eigen-decomosition.

Suppose the matrix A ∈ Rn×n has n linearly independent eigenvectors x1, . . . ,xn.

Define the matrix Q having these vectors as columns, i.e. Q = [x1 x2 . . . xn].

Let D be a diagonal matrix with the eigenvalues λi in the diagonal. Show that

A = QDQ−1

2.7 Diagonalization of real symmetric matrices.

1. Prove that a real symmetric matrix, A = AT ∈ Rn×n, has real eigenvalues.

2. Prove the fact that real symmetric matrices with distinct eigenvalues have

orthogonal eigenvectors.

3. Use the two previous facts to show that in this case A admits the following

decomposition

A = QDQT

