Exploring the Yelp Data Set: Extracting Useful
Features with Text Mining and Exploring Regression
Techniques for Count Data

Anonymous Author(s)
Affiliation
Address

email

Abstract

We attempted to predict the number of ‘Useful’ votes a fresh Yelp review will
receive using training data provided by Yelp in a recent Kaggle competition. Fea-
tures were extracted from the review text with text mining techniques, and other
features were created from supplementary user, business, and review data sets. We
explored the use of Random Forest Regression and LASSO Regression to predict
how many ‘Useful’ votes a review received. We also investigated the use of Neg-
ative Binomial Regression and Zero Inflated Negative Binomial Regression using
features selected with the aid of both the trained Random Forests and the LASSO
models. The different prediction techniques were then compared and analyzed.

1 Introduction and Motivation

Generally speaking, people want to mitigate the risk of their decisions. One way to reduce risk is
to consult the experiences of others before making a decision. For example, when considering the
purchase of a new laptop, one can try to avoid a potentially bad purchase by consulting the ratings
and reviews written by people who have already purchased the laptop. With the Internet, it has
become easier to access and share reviews for almost every product and service imaginable.

However, some issues can arise due to the vast amounts of information that is available on the
web. With respect to review data, we have the problem of data quality and data freshness. If left
unchecked, users would have to sift through a multitude of data to find up-to-date reviews that
are of good quality. Machine learning can alleviate these issues by learning which reviews are
considered to be of good quality from the users and then predicting the quality of new reviews
without depending on the input of the users.

After a brief literature search, we found there has been some success at approaching this problem
as a classification task [1]. In this paper, we attempt to answer a regression problem rather than a
classification problem - that is to say, for a given review, can we use machine learning to predict the
number of users that will find the review useful?

1.1 Yelp

Yelp is a local business directory that includes social networking features. With the help of its
users, Yelp provides a wealth of information about a business, such as its location, price range, and
ambiance, among many other things. More interestingly, users are able to rate and write reviews
about a business. The moderating of the reviews is largely left to the community, where users can
judge the quality of a review by flagging it as being ‘Useful’, ‘Funny’, or ‘Cool’. Other social
networking features include the ability to ‘check-in’ to the business via the Yelp mobile app.

Yelp recently issued a Kaggle contest that challenges participants to predict the number of ‘Useful’
votes a fresh review will receive. In this paper, we explain the approach we took to address this
question.

1.2 The Data

The data sets that Yelp provided consisted of 229,907 reviews of 11,537 businesses in the Phoenix,
Arizona area by 43,873 users. A data set containing 8,282 sets of check-ins was also provided. The
training data was collected from March 2005 up to January 2013.

Due to the daily submission limit on the Kaggle competition, it was inconvenient for us to assess our
model performance on their test set, as we were training many models. Instead, we tried to emulate
the conditions of the competition by splitting the training data into two parts. The oldest 80% of
the reviews were used to train the models, and testing was done on the remaining 20% of the data.
We will refer to the older 80% of the data as the training set and the newer 20% as the validation
set unless otherwise specified. Once the models were tuned based on the results of the validation
set, we trained the final models on the entirety of the labeled data and submitted our predictions for
Yelp’s private test set.

2 Methods
2.1 Data Processing and Feature Extraction

Before any analysis was done, features had to be extracted from the review text using text mining
techniques. All work on the review text was done using the text mining package tm [2] in the R
statistical programming language. We followed the basic work flow for preprocessing the data and
extracting features as proposed by the tm package authors [2].

We chose to pursue a simple bag-of-words representation of the text data in a document term matrix
(DTM), where a DTM has the documents as rows, the words as columns and a (weighted) frequency
measure (explained below) of how many times the jth word appears in the ith document as the entry
in row i and column j. These text features were later augmented with other features provided in the
supplementary data sets.

2.1.1 Processing the Text Data

Some preprocessing of the data was necessary before features could be extracted from the text. The
data cleaning process involved removing formatting, converting the data into plain text, stemming
words, removing whitespace and uppercase characters, and removing stopwords.

Stemming [3] refers to the process of erasing word suffixes to retrieve the root (or stem) of the
words, which reduces the complexity of the data without significant loss of information in a bag-of-
words representations of text data. We used the popular Porter stemming algorithm in our analysis
to remove the common endings of words. For example, stemming reduces words such as fishing,
fished, fish, fisher, and fishes to the stem word, fish. The stemming procedure reduces the number of
words to consider and provides a better frequency representation in the DTM as a result.

Stopwords are defined as words in a language that are so common that their information value is
practically null. Some common stopwords are words such as a, and, but, the, and if, among many
others. It is common practice in text analysis to reduce the number of ‘noisy’ words in the data by
removing stopwords. We relied on the SMART information retrieval system data base to remove
stopwords in our reviews [4].

As a final step we reduced the sparsity of the DTM by removing uncommon words. There were
many words that were very rare, and others that were grossly misspelled. These words appeared in
only a handful of documents and offered little information value, so to reduce the number of noisy
variables in our data further, we removed terms that appeared in less than 3% of the documents. The
final DTM contained 288 words of interest.

2.1.2 The Review Text Features

It has been reported that a weighted term frequency DTM provides more information, as opposed to
just a term frequency DTM. We used the Term Frequency-Inverse Document Frequency (TF-IDF)[5]

weighting to provide a metric for the importance of a word in our DTM. As its name suggests, TF-
IDF is the product of the normalized Term Frequency (TF) and the Inverse Document Frequency
(IFT) statistics, where

frequency of term ¢ in document d

TF(t,d) =
(¢, 4) max{frequency of term w in document d : w € d}

IDF(t, D) = log (total number of documents in D >

1 + number of documents where term ¢ appears in D
TF-IDF(¢,d, D) = TF(t,d) x IDF(¢, D)

In our data, ¢ is word in our DTM and d is a single review in the set of all reviews, D. A high
TF-IDF value is obtained when a term appears frequently in a given review but appears rarely in the
collection of all reviews. When a term appears in many reviews, the IDF function will approach 0.
Therefore, we can view the TF-IDF weights as filtering out common words.

2.1.3 Other Features

In addition to the features created from the review texts, we had access to supplementary data con-
necting the reviews to the businesses, users, and check-ins data. We added the useful features from
these data sets to the DTM, and created some new features as well. These features are summarized
in Table 1. We also centered and scaled the continuous variables so that the features would all be in
similar and comparable scales.

Table 1: The features extracted from the Yelp data sets.

DATA SET FEATURES DESCRIPTION
Review Star Rating Star rating associated with review (from 0 to 5)
Date Days until February 26, 2013
No. words Number of words in review
No. lines Number of lines in review
Happy Presence of a happy emoticon
Sad Presence of a sad emoticon
Business Longitude Longitude of business
Latitude Latitude of business
Average Stars Average star rating of business
No. reviews Number of reviews received
Open Is the business still operating
User No. reviews Total number of reviews written by user
Average Stars Average star rating assigned by user in all reviews
Check-ins Weekday early morning Check-ins between 12AM-7AM
Weekday morning Check-ins between 7AM-11AM
Weekday midday Check-ins between 11AM-2PM
Weekday afternoon Check-ins between 2PM-5PM
Weekday evening Check-ins between SPM-9PM
Weekday night Check-ins between 9PM-12AM

Weekend early morning
Weekend morning
Weekend midday
Weekend afternoon
Weekend evening
Weekend night

2.2 Modeling the Response Variable

Check-ins between 12AM-7AM
Check-ins between 7AM-11AM
Check-ins between 11AM-2PM
Check-ins between 2PM-5PM
Check-ins between SPM-9PM
Check-ins between 9PM-12AM

The variable of interest, ‘Useful Votes’, can be thought of as count data, taking on positive integer
values. The mean number of votes in the data set was 1.387, and the data was heavily skewed to the
right. Out of the 229,907 reviews, 41.5% of the reviews received 0 votes, 28.4% received 1 vote,
13.7% received 2 votes, 6.68% received 3 votes, and 9.75% received 4 or more votes. A histogram

of the response variable is displayed in Figure la. It should be noted that there are 39 reviews that
receiving more than 30 votes, with one review receiving 120 votes. These entries were omitted in
the figure in order to produce a readable figure.

100000 100000
75000 75000

50000 50000

25000 4 25000 4 ‘ I
o i

] 5 10 15 20 3 0
Useful Votes log(# Useful Votes:

count
count

) 3
(a) The discrete response variable. (b) Log transformed response variable.

Figure 1: Histograms showing the distribution of the number of ‘Useful” votes in the Yelp data set.
There were 229,907 reviews in the data set. There were 39 reviews with more than 30 votes (not
shown in a).

If we were to naively fit a regression model on the count data, we may end up with negative pre-
dictions, which do not make sense. A convenient transformation for discrete count data is to model
the log of the response variable instead. Since the logarithm of 0 is negative infinity, we can add a
small € = 0.01 to the count data to avoid this problem. The histogram of the log response is shown
in Figure 1b.

We tried fitting the non-parametric Random Forest regression model and the L1 penalized linear
regression model (LASSO) on both the response variable and the log of the response. We used the
two models to conduct feature selection, and then tried fitting fully parametric regression models on
the discrete response variable using Negative Binomial (NB) regression and Zero Inflated Negative
Binomial (ZINB) regression models. These models are discussed below.

2.2.1 Random Forest Regression

Random Forest [6] is a popular machine learning algorithm that can perform both classification and
regression, and it has been known to perform well on many different types of data sets. The basic
idea of Random Forest is to train an ensemble of uncorrelated, weak learners with high variance on
bootstrap samples of the data, and then output the average result.

We used the Python implementation of Random Forest in the package scikit—-learn. We made
a Random Fores of 100 trees, and tuned the maximum depth of the trees in the forest using 4-fold
cross-validation to minimize prediction error (the exact error metric is discussed in Section 2.3) on
the training set. The other parameters were kept at their default settings. A regression was fit on both
the discrete response variable and the log of the response variable and their prediction performance
was assessed on the validation set.

Random Forest also provides a variable importance measure. In the implementation by
scikit—-learn, variable importance is measured by the expected fraction of the splits that a
feature contributes to. In other words, the number of times a feature is used to provide an optimal
split in a node of a decision tree in the forest can provide an estimate of the relative importance of a
feature. The relative importance of each feature is normalized to sum to 1. The variable importance
measures from the final model were used to train the NB and ZINB models.

2.2.2 LASSO Regression

The LASSO [7] is a linear regression method that uses an L1 penalty to control the complexity of
the model. Similar to Ridge regression, it is a shrinkage operator that causes the coefficients in the
linear model to become smaller, but due to the nature of the L1 constraint, LASSO causes some
coefficients to be shrunk to 0. Because of this result, we can perform feature selection by using the
subset of the features with non-zero coefficients in the final LASSO model.

We use the LASSO implementation found in scikit-1learn Python package. Like the Random
Forest model, we tune the regularization parameter using 4 fold cross-validation on the training set
to minimize prediction error. The model was fit on both the discrete response variable and the log of
the response variable. The features with non-zero coefficients in the final LASSO model were used
to guide the training of the NB and ZINB models.

2.2.3 Negative Binomial Regression

The aforementioned Random Forest regression and LASSO regression models assume that the re-
sponse variable is unbounded. However, the number of ‘Useful’ votes is a positive discrete variable,
and so we made an effort to correct for this by modeling the logarithm of the votes as the response.

We now consider assuming a distribution on the response variable and fitting a linear model on
the mean response. This is referred to as a generalized linear model (GLM) [8], where we assume
that the expected value of the response variable follows a linear model after being transformed by
a link function. The reader may be aware of logistic regression, one of the more commonly used
GLMs. Logistic regression is used when the response variable is binary and is assumed to follow a
Bournoulli distribution. The mean parameter is then assumed to follow a linear model after being
transformed by the logit link function. More formally, in the logistic regression, we assume that
yi|X ~ Bern(p;) and

. i
logit(p;) = log (1 _’pi> =Xz
B 1
S 14 e X8

where p; = Pr(y; = 1|X) = E(y;|X), and the logit link function is what constrains the linear model
to make predictions between 0 and 1.

Di

Now in negative binomial regression [9], we assume that the response variable is discrete and pos-
itive (i.e. is count data), and we assume that it follows a negative binomial distribution. We can
then use the log link function to model the mean response variable with a linear model. More for-
mally, we have y;|X ~ NegBin(u;, k), where pu; is the mean and « is the dispersion parameter that
controls the shape (i.e. the variance) of the distribution. We can model the expected value with

log(E(y:|X)) = log(u:) = Xj
p; = exp(Xp)
The coefficient parameters 3 can then be estimated via maximum likelihood methods (via iteratively
reweighted least squares algorithm, for example). For prediction on count data, NB regression
has been shown to be comparable to neural networks in some situations [10]. We fit this fully
parameterized NB regression using the g1lm package in R. We also tried fitting the NB regression
with the variables selected by Random Forest and LASSO, and then tried another feature selection
step by using features that were deemed to be statistically significant by the Z-test.

2.2.4 Zero Inflated Negative Binomial Regression

In some instances, we may observe more zero counts than can be explained by the negative binomial
model. As can be seen in Figure 1a, the number of zero ‘Useful’ votes in the Yelp review data is
very high, accounting for over 40% of the responses. This problem can be amended by fitting a Zero
Inflated Negative Binomial model [9], where it is assumed that the response y; is generated from a
mixture of two distributions: (1) responses that are zero with probability one, and (2) responses that
follow the negative binomial model. In regards to our Yelp review data, we may have some reviews
with that have zero votes with probability one because the reviews are truly useless, and then we
may have other reviews that follow the negative binomial model.

Now two distinct sets of features can be used to model the ZINB regression. Features can be used in
the Zero Inflating part of the model, which can be expressed as a logit model for predicting the latent
variable of whether a review is useful or not. Another set of features can enter in the NB model,
which determines how many votes a useful review will receive.

We used the pscl package in R to fit the ZINB model.The features that were selected by Random
Forest and LASSO were used to fit both the ZI and the NB parts of the model. Afterwards, we

tried to fit a reduced model using the statistically significant features according to the Z-test, and the
results were compared our other fitted regression models.

2.3 Evaluation of Performance

We use root mean squared log error (RMSLE) on the validation set to evaluate the performance of
our models:

RMSLE = > (log(pi + 1) — log(a; + 1))2
=1

S|

where 7 is the number of reviews in the validation set, p; is the predicted number of useful votes for
review ¢, a; is the actual number of useful votes for review ¢, and log(x) is the natural log of .

This error function places more importance on minimizing the error for reviews that have a smaller
number of actual ‘Useful’ votes. For example, an absolute error of 1 on a review with 3 ‘Useful’
votes will be worse than an absolute error of 1 on a review with 100 votes.

3 Results and Discussion

3.1 Tuning Random Forest and LASSO

We assessed the optimum tree depth of the Random Forest Regression using 4 fold cross-validation
on the training set. We considered using trees with maximum depths of {1, 10, 20, 30, 50, co}. It
was found that the optimum depth of the trees in a Random Forest was 20 - any more resulted in
overfitting on the training set, and any less resulted in poor predictive performance. Similarly, the
regularization parameter for LASSO was chosen using 4 fold cross-validation on the training set.

3.2 Benefits of Term Weighting and Fitting on the Log Response

We begin by comparing the best results we obtained from fitting the Random Forest and LASSO
models (as described in Section 2 and 3.1) using the Term Frequency text features and the TF-IDF
weighted text features. We also report the observed effect of fitting the models on the log of the
response versus the discrete response. The results are summarized in Table 2.

Table 2: The RMSLE values from predicting on the validation set using models trained on the
training set. Note that the features mentioned Section 2.1.3 were included in all data sets. A refers
to the regularization parameter for LASSO.

MODEL TEXT FEATURES RESPONSE TYPE RMSLE NOTES

Random Forest Term Frequency Votes 0.5834 100 trees,
Term Frequency log(Votes) 0.5522 max depth 20
TF-IDF Votes 0.5819
TF-IDF log(Votes) 0.5457

LASSO Term Frequency Votes 0.5447 A=0.0045
Term Frequency log(Votes) 0.6384 A=0.6384
TF-IDF Votes 0.5313* X=0.0670
TF-IDF log(Votes) 0.6020 A=0.5573

It seems that using the TF-IDF weighted text features consistently provides better predictions with
regards to the RMSLE error metric in both Random Forest and LASSO, but not by much. We note
that the TF-IDF weighting may have been more useful if we had kept more words in the DTM.

On the other hand, taking the log of the response before training the Random Forest yielded notice-
ably better results, while LASSO seemed to perform better on the untransformed response. We are
not exactly sure why this is the case, but we suspect that taking the log transform of the response
variable may make the relationship between the response and the covariates highly non-linear, re-
sulting in lower predictive performance for LASSO. The best results were achieved using LASSO
on the TF-IDF weighted text features and the discrete response variable.

3.3 NB and ZINB Regression Results

We used the features selected by Random Forest and LASSO to fit the NB and ZINB models (see
Table 3). Interestingly, Random Forests found more text features important, while LASSO found
more supplementary features important. An important feature for both models was the length of the
review (num_words, num_lines).

For the ZINB model, the selected features were used for both the Zero Inflating part and the NB part
of the model. In addition, if a feature was found to be statistically insignificant, we tried dropping
the feature from the model. However, we found that dropping feature did not improve the RMSLE
measure on the validation set.

Table 3: Selected features for negative binomial regression

Features Selected by Random Forest Features Selected by LASSO

Text Other Features Text Other Features

reason return user_review_count | locat user_review_count num_words
attent hit num_words beer date num_lines
chicken servic date area WD_morn WD_aftnoon
special leav num_lines food biz_review_count =~ WD_night
taco steak user_avg_stars place biz_avg_ stars user_avg_stars
fresh option longitude pretti WE_aftnoon open

includ hour review _stars pizza WE_morn latitude

call good latitude_ biz great WD _eve review _stars
owner arriv biz_review_count nice longitude WE_mid
half mix good WE_eve

We found that the ZINB regression model performed slightly better on the validation set when com-
pared to the NB regression model (see Table 4). However, both the fitted ZINB and NB models
performed worse than the LASSO and Random Forest Regression models. It seems that the distri-
bution assumption on the count data did not yield any advantages over the non-parametric Random
Forest and the linear LASSO model with the features that we selected.

Table 4: The RMSLE values from predicting on the validation set using models trained on the
training set.

MODEL RESPONSE TYPE BEST RMSLE
LASSO Votes 0.5313
Random Forest log(Votes) 0.5457
ZINB Regression Votes 0.5787
NB Regression Votes 0.5856

3.4 Kaggle Contest Results

We trained the LASSO, Random Forest, NB and ZINB models on the entirety of the training and
validation sets using the best parameters we found in our experiments and submitted our predictions
of the test set to the Kaggle competition. Our LASSO performed the best out of our submitted mod-
els, placing us in 20*" place on the leaderboard out of 89 participants as of April 16th. Surprisingly,
Random Forests performed quite poorly on the test set, indicating that our fit may not have been
very robust. NB regression performed nearly as well as LASSO, and much better than Random
Forest. Unfortunately, due to the submission limit, we were not able to submit our predictions from
the ZINB model before the project deadline. We would predict that its performance falls between
the LASSO and NB Regression results. The test set errors are summarized in Table 5.

4 Future Work and Conclusions

Having better features will almost always guarantee better results. We took a very simplistic ap-
proach and extracted unigram features from the text data, but there are many more methods of
extracting information from texts that we did not explore. We believe that we could improve our
results if we use a sparser DTM with more terms, look at n-gram text features (e.g. consider pairs or

Table 5: Current Kaggle standings, as of April 16, 2013. The RMSLE is calculated by Kaggle on an
unlabeled test set consisting of 22,956 reviews.

MODEL RMSLE
Current Leader 0.44808
LASSO 0.53765
NB Regression 0.55022
Random Forest 0.68775

Global Mean Benchmark 0.72327
All Zeros Benchmark 0.72745
ZINB Regression N/A

triples of words), perform synonym matching, and do part-of-speech tagging. It would be interesting
to apply our models with better features using natural language processing.

Also, we only considered the vanilla implementations of Random Forest and LASSO provided by
scikit-learn. We may have observed better results had we customized the algorithms for our
specific task. For example, we wonder if we would have seen an improvement in the Random Forest
results if we had changed the criterion for spliting nodes to one suitable for count data, or if we had
fit Poisson Regression or Negative Binomial regression models at the nodes of decision trees.

In addition, we relied heavily on Random Forests and LASSO to select features for fitting the Neg-
ative Binomial regression models. It may have been worthwhile to explore other feature selection
methods, such as forward selection and backward selection using statistical tests such as the likeli-
hood ratio test to compare models. Maybe Bayesian Optimization could be applied in the feature
selection process, or tuning of our models. Also, it would have been worthwhile to investigate the
Zero Inflating process more carefully in the ZINB models.

In conclusion, we have found some success at predicting the number of ‘Useful” votes a Yelp review
will receive using LASSO and Random Forest Regression, two well known tools in the machine
learning toolkit. In addition, we introduced the Negative Binomial and Zero Inflated Negative Bino-
mial regression models as potential alternatives for modeling relationships in count data, and have
shown that they are somewhat comparable to LASSO and Random Forests. In the long run, it may
be worthwhile to investigate parametric models such as the NB and ZINB models, as they may
provide a framework that can help us understand how the data was generated.

References

[1] O’Mahony, M. P., Cunningham, P., & Smyth, B. (2010). An assessment of machine learning techniques
for review recommendation. In Artificial Intelligence and Cognitive Science (pp. 241-250). Springer Berlin
Heidelberg.

[2] Feinerer, 1., Hornik, K., & Meyer, D. (2008). Text mining infrastructure in R. Journal of Statistical Software,
25(5), 1-54.

[3] Porter, M. F. (1980). An algorithm for suffix stripping. Program: electronic library and information
systems, 14(3), 130-137.

[4] Salton, G. (1971) The SMART Retrieval System—Experiments in Automatic Documnet Processing. Upper
Saddle River: Prentice-Hall.

[5] Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information
processing & management, 24(5), 513-523.

[6] Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

[7] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), 267-288.

[8] Nelder, J. A., & Wedderburn, R. W. (1972). Generalized linear models. Journal of the Royal Statistical
Society. Series A (General), 370-384.

[9] Hilbe, J. M. (2011). Negative binomial regression. Cambridge University Press.

[10] Chang, L. Y. (2005). Analysis of freeway accident frequencies: negative binomial regression versus
artificial neural network. Safety science, 43(8), 541-557.

