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Abstract

This project provides an insight into ultrasound-based solutions for breast lesion
characterization to reduce the patient recall rate after mammography screening. In
this work, ultrasound radio frequency time series analysis is performed for sepa-
rating benign and malignant breast lesions with similar B-mode appearance. The
radio frequency time series method is versatile and requires only a few seconds
of imaging with no need for additional instrumentation. This study employs the
spectral and fractal features of ultrasound radio frequency time series along with
a machine learning framework with leave-one-patient-out cross validation of the
classification. Support vector machines, bagged decision trees (random forest),
and naive Bayes methods are used and compared in this context. For clinical
relevance, cancer probability maps are also produced, by estimating the poste-
rior malignancy probability of regions of size 1 mm2 in the suspicious lesions.
Recorded area under the receiver operating curve is, 0.79 using SVM, 0.74 using
random forest, and 0.68 using naive Bayes classification. All classifiers success-
fully classified 6 out of 7 patients with malignant breast lesions and 4 out of 5
patients with benign lesions, with success defined as correct classification of at
least 80% of the 1 mm2 regions. The above findings suggests that ultrasound ra-
dio frequency time series along with the developed machine learning framework
can help in differentiating malignant from benign breast lesions.

1 Introduction

In the United States, it is estimated that 226,870 (29%) of all new cancer cases among women
will be breast cancer [1]. Breast cancer also ranks first in cancer related deaths among women of
20-59 years [1]. Mammography is routine for screening asymptomatic patients; however, it is not
very effective in identifying benign and malignant breast lesions [2, 3]. The high rate of recall for
biopsy after mammography emphasizes the need to augment the Breast Imaging-Reporting and Data
System (BI-RADS). Breast ultrasound is used as a supplement to mammography in distinguishing
benign from malignant in non-palpable breast lesions. Ultrasound has a high sensitivity, however
rather low specificity. In some studies, a specificity of 31% was recorded [4]. Currently, almost 75%
of the biopsies carried out after radiological diagnosis turn out to be benign [2, 5]. Thus, there exists
a need for reducing the number of breast biopsies and improving ultrasound-based diagnosis.

To improve the performance of ultrasound-based techniques for breast cancer imaging, researchers
have widely explored strain-based elastography for tumor classification with high success rates [6, 7,
8, 9, 10]. The average area under the Receiver Operating Characteristic (ROC) curve for ultrasound
elastography was recorded as 0.90 [6], 0.85 [7], and 0.92 [8]. Freehand elastography depends on
compression applied to the tissue by the probe. This compression is applied manually through the
transducer [10], or by the use of a “shaker”[8].
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Recently, a tissue typing method based on a time series of Radio Frequency (RF) ultrasound signals
was proposed which could complement B-mode and elastography techniques for breast lesion clas-
sification. The advantage of this method is that it does not require a vibration mechanism. In the
past, RF time series has been proven successful in detecting prostate cancer and differentiating ani-
mal tissue types [11, 12, 13]. The credibility of RF time series for tissue typing has been established
through analysis and experiments. A model has been developed to relate the variations of the US
backscattering to the variations in tissue temperature and sound speed that take place during the RF
time series scanning procedures [14]. The measurements of the variations in the US backscattering
are then used in a tissue classifier. In this work, for the first time, the performance of RF time series
in separating benign and malignant breast lesions in vivo, is reported.

For the purpose of this project, a machine learning framework was developed for quantitative anal-
ysis of spectral and fractal parameters extracted from RF time series. In this study, three different
classification algorithms were used to generate highly sensitive and specific malignancy maps that
can be used for decision support in biopsy recommendation. The proposed approach can be part of
the overall solution for multiparametric ultrasound imaging of breast cancer.

2 Methods

2.1 Data Collection

An RF time series is formed by the sequence of RF echoes received from one location in the tissue
over time. To acquire the RF time series, one keeps the ultrasound probe and the tissue fixed in
place and acquires frames of RF signals. In this method of analysis, the tissue typing parameters are
extracted from the temporal changes of signal as opposed to the classical method of spectral analysis
on spatial segments of the RF signals [15].

In order to study the utility of RF time series analysis in separating cancerous breast lesions from
benign findings, a study approved by the Clinical Research Ethics Board at the University of British
Columbia was devised. Patients referred to ultrasound-guided biopsy, based on mammography
screening, were consented for data collection during biopsy for this study. The study was con-
ducted between September 2012 and January 2013. Data was obtained on a Sonix Touch ultrasound
machine (Ultrasonix Medical Corp., Richmond, BC, Canada). The research platform provided by
the manufacturer enabled acquisition of raw RF signals in real time. For every subject, the sonog-
rapher first performed a preliminary ultrasound scan to find the suspected lesion. Once the lesion
was located, the sonographer would hold her hand steady for 4 seconds while a computer program
stored the RF data into the memory and consequently saved it in a file. Imaging was performed
with an L14-5/38 ultrasound transducer at a center frequency of 10 MHz and a depth of 4 cm. Each
RF line was sampled at 40 MHz and a total of 128 A-lines were acquired for each RF frame. With
these image settings, a frame-rate of 98 frames per second was achieved. The data collection of
each subject was followed by a routine ultrasound exam and a core needle biopsy of the lesion under
ultrasound guidance by the physician. The first 12 cases are reported here. Biopsy results for these
cases showed seven malignant lesions all of the invasive ductal carcinoma type and five benign cases
all of the fibroadenoma type.

2.2 Features

Only the first 256 (out of 490) RF frames (2.6 sec) were used for calculating the features. This was
done to minimize the effects of patient motion on the analysis. The biopsied lesions were divided
into 1 mm2 regions of interest (ROIs). The tissue typing features were extracted from these ROIs.
In the RF domain, this ROI size was equivalent to 3×52 samples each forming a time series. Note
that from the 12 lesions in the dataset, a total of 641 ROIs were extracted. Among these, 241 were
malignant. In other words, the first 241 samples of the training data belonged to the malignant class
and the rest 400 samples belonged to the benign class.

The following seven spectral and fractal parameters were extracted from each time series and aver-
aged to form the feature vector describing an ROI.

Spectral parameters: The frequency spectrum was estimated by calculating the FFT-based peri-
odogram of the Hamming windowed time series. This estimated spectrum was divided into four
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frequency bands and each averaged to deliver a feature. In other words, the first four features (Fea-
tures 1-4) were the average of the frequency spectrum in [0,π/4) , [π/4,π/2) , [π/2,3π/4) , [3π/4,π]
frequency bands in the discrete frequency domain. Note that the sampling rate here is equivalent
to the frame rate of the ultrasound machine. Two other spectral features were the intercept (Fea-
ture 5) and the slope (Feature 6) of a regression line fitted to the magnitude of the spectrum versus
normalized frequency.

Fractal dimension: Feature 7 was the average fractal dimension of RF time series in a region of in-
terest. In this context, fractal dimension (FD) is a measure of the nonlinear complexity of the signal.
For calculation of the FD, the algorithm proposed by Higuchi [16] was used, which decomposes the
signal into different scales and evaluates the signal complexity. Higuchi’s algorithm was used with
16 levels of decomposition for the time series of length 256.

2.3 Classification and estimation of posterior malignancy probabilities

Support vector machine (SVM): SVM is a widely used maximum margin classifier. In the classi-
fication process using SVM, the data is first mapped to a significantly higher dimension and then
the optimum hyperplane that separates the data into two classes is found. Training the data includes
searching for the best hyperplane that maximizes the orthogonal distance between the datasets that
are closest in the two classes and the decision boundary. The C++ SVM implementation called
LIBSVM and reported in [17] was used for this purpose. The Radial Basis Function (RBF) kernel
defined as:

K(xi, xj) = e−γ‖xi−xj‖2 (1)

was employed and the parameter values of the RBF exponent and the slack variable weight co-
efficient were set with a grid search. SVM classifier can be used with other kernels like, linear,
sigmoid, and polynomial however, for our problem RBF kernel worked better. For the SVM classi-
fication problem described in this report only two parameters had to be found, C, that governs the
trade-off between the separating margin and the slack variable penalty, and γ, that is the RBF ker-
nel parameter. The parameters C and γ were found by doing an exhaustive search between 1-1000
and performing a tenfold cross validation. Posterior class probabilities were calculated using Platt’s
algorithm [18] as follows. Assume that the SVM hyperplane obtained after training is Wφ(F ) + b
where F is the feature vector and φ is the kernel function. A sigmoid function of form:

Pc = (cancer|(Wφ(Fi) + b)) =
1

1 + exp(A(Wφ(Fi) + b) +B)
(2)

is calculated for mapping the test feature vector Fi to posterior malignancy probability Pc. Maxi-
mum likelihood estimation from the observations for which the true labels are known (training data)
is fitted to calculate the values of the parameters A and B. Pc values are used as the threshold
parameter for generating the ROC curves and malignancy maps.

Bagged decision trees (Random Forest): Random forest implementation (TreeBagger) within the
MATLAB Statistics Toolbox was used. Bagged decision trees or random forest is a popular clas-
sification algorithm employed by many researchers [19]. Random forest consists of an ensem-
ble of N decision trees, {T1(F ), ...., TN (F )}, where F = {f1, ...., fn} is an n dimensional fea-
ture vector containing observation features for an ROI. The trees in the ensemble produce outputs
{Ŷ1 = T1(F ), ...., ŶN = TN (F )}, where Ŷi, i = 1, ...., N is the predicted label of an observation
by the ith tree based on a cutoff of 0.5 on the posterior class probability. The overall posterior class
probability for the malignant class is obtained by simple averaging on all trees in the ensemble (for-
est). The final label prediction Ŷ is done based on the overall posterior class probability. In this
work, only 500 trees were grown and the trees were constructed shallow to avoid over-fitting the
data. To increase the randomness of the classifier and avoid error due to noise only 3 features (out
of 7) were randomly selected to determine the best split at each node of the tree. Also, for boot-
strapping only 2/3 of the training data was used. The training algorithm implemented in MATLAB
closely follows the method described by [19].

Naive Bayes classification: The implementation within MATLAB Statistics Toolbox was used. The
kernel density estimation was used for the distribution of the features. Unlike SVM, Naive Bayes
method is probabilistic in nature and the outcome is class probability as opposed to label. However,
an underlying assumption in Bayesian approach as implemented is that features should be condi-
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tionally independent. Later in the report it is shown that the naive Bayes classifier performed worst
due to high correlation between the features (as shown in Figure 1).

Cross validation: In all classifiers, the cross-validation was leave-one-patient out in order to avoid
the possible optimistic bias introduced by the batch structure of the data. The ultimate aim of the
proposed classification method is to provide accurate predictions on future subjects and only a leave-
one-patient-out scheme can test that ability (as opposed to k-fold cross-validation).

3 Results

A heat map showing the correlation between the features is given in Figure 1. A high degree of
correlations is observed between spectral parameters. The feature selection search returned a rela-
tively small subset of features that included features 2 and 4 and 7. The search was exhaustive and
was performed on the SVM separately with the goal of maximizing the area under ROC curve with
leave-one-patient-out cross validation. Exhaustive search was feasible due to the small number of
features that resulted in only 127 non-empty subsets.

Correlation coefficients of features
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Figure 1: The correlation coefficients of features as a heatmap

The classification results were validated using the biopsy result of the patients. Table 1 is the sum-
mary of the histology reports (IDC stands for invasive ductal carcinoma and FA stands for fibroade-
noma). The bulk result of the classification is also reported in this table. In six out of seven malignant
cases, all three classifiers successfully predicted the label in leave-one-patient-out cross validation.
It should be noted that success was defined as obtaining the correct label for 80% of the 1 mm2 ROIs
extracted from a lesions. For the one malignant case which was misclassified, further investigation
of the B-mode image revealed calcification in parts of the area of the pathalogic finding. For benign
cases, the classifiers were successful in four out of five cases. The result was consistent among the
three classifiers, meaning that the same case was misclassified by all three classifiers.

The posterior class probabilities for the 641 ROIs of size 1 mm2, generated by leave-one-patient-out
training and testing scheme, was used to generate the ROC curves for the three classifiers. This re-
sulted in an area under the curve of 0.79 using SVM, 0.74 using random forest, and 0.68 using naive
Bayes. The curves are depicted in Figure 3. The weak performance of the naive Bayesian method
could be attributed to the fact that the selected three features are not conditionally independent as
observed in Figure 1.

Using a cutoff value of Pc=0.5 for the posterior class probabilities, Table 2 reports the sensitivity
and specificity of the classifiers. A sensitivity of 86% was obtained using SVM. It is also notable
that the methodology is specific with specificity values of 84.5% and 85% for SVM and random
forest, respectively. SVM and random forest outperformed the naive Bayes classifier. SVM was
most sensitive (86.7%) and random forest was most specific (86%).
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Table 1: Histology report for 12 patients
Patient BIRADS Tissue Type Biopsy Result Classification Result
Patient 1 5 IDC Malignant Malignant
Patient 2 5 IDC Malignant Malignant
Patient 3 5 IDC Malignant Benign
Patient 4 4B IDC Malignant Malignant
Patient 5 4C IDC Malignant Malignant
Patient 6 4C IDC Malignant Malignant
Patient 7 4B IDC Malignant Malignant
Patient 8 3 FA Benign Benign
Patient 9 4A FA Benign Benign

Patient 10 4A FA Benign Malignant
Patient 11 4A FA Benign Benign
Patient 12 4A FA Benign Benign
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Figure 2: ROC curves for the three classifiers

As Figure 3 shows, by plotting the values of class probabilities on the area of the lesions, a map of
malignancy is obtained. These maps are generated using the SVM classifier. This can be potentially
used for guiding the biopsy in real time.

Figure 3: The malignancy map created by plotting the value of posterior malignancy probability
(Pc) of the ROIs overlaid on the B-mode image. The image on the left is from a malignant case,
and one on the right is a benign case. As expected, the left image shows high probability of cancer
(reddish) and the right image shows a low probability of cancer (bluish)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Table 2: Sensitivity and specificity values for classifiers.
Classification Algorithm Sensitivity Specificity

SVM 86.7% 84.5%
Random Forest 85.4% 86%

Naive Bayes 70.5% 69.3%

4 Conclusion

In this work, the use of ultrasound RF time series as a method for detecting malignant breast lesions,
is reported. This is a pressing clinical need and can potentially reduce the rate of recall for biopsy af-
ter mammography. The results of this study suggests that, by using a selection of spectral and fractal
parameters extracted from temporal RF signals, within a machine learning classification framework,
one can obtain high sensitivity and specificity for this problem. The present dataset includes mostly
benign cases of BI-RADS 4. These are very likely to be sent to biopsy and as the results show, the
biopsy could have been avoided with the use of this methodology in four out of five cases.

The time series method in this work required less than 3 seconds of data. It was found that by asking
the patients to hold their breath, the amount of motion can be minimized to reduce the impact of
motion on the analysis. Lastly, it can be concluded that RF time series is a practical and accurate
method for sonographic augmentation of the BI-RADS criteria. Previous work has shown that a
multiparametric ultrasound approach is potentially capable of improving the diagnostic value of
imaging and it is argued here that RF time series can be a component of that approach.
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