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Abstract

The idea of femtocell have attracted lots of interest from the research community
of wireless communication. Femtocells aim to increase the capacity and coverage
area of the current cellular network by helping to reduce its actual cell size. How-
ever, new design challenges arise by randomly deploying the femtocells over the
cellular network, hence a heterogeneous network. One of the main problems is the
so-called co-tier and cross-tier interference caused by the new femtocell network
layer, which is operating in the same frequency spectrum as the cellular network.
Various techniques have been proposed to deal with the interference management
issue in heterogeneous networks. This paper investigates the use of reinforcement
learning algorithms to solve interference problems in two tier heterogeneous net-
works. We assume the femtocell user equipments (FUEs) and macro user equip-
ments (MUEs) to be selfish and we try to guarantee the Quality of Service (QoS)
of all users equally if possible. We formulate the power adaptation process of the
FUEs and MUE to be a discrete multi agent Markov decision problem and solve
it by using the well-known Q-learning algorithm. In the MDP process, each agent
adapts its own transmission power by learning from the environment. Numerical
results show that the distributed decision process will converge to an equilibrium
and make the system more efficient.

1 Introduction

The next generation network will be composed of several layers of networks with different service
ranges. The current cellular network promises to provide network access anywhere and any time.
But in practice every mobile user experienced some dead spots of the network. In future, femtocells
with a coverage circle of several meters in radius, will be randomly and massively deployed over
the traditional cellular network. The aim of the femtocells is to provide indoor mobile users a better
wireless connection and save their limited battery energy. At the same time, femtocells deployment
increases the overall network capacity, coverage area and throughput by reducing the distance be-
tween transmitters and receivers. However, cross-tier and co-tier signal interferences arise with the
random deployment of femtocells because all the agents operate in the same frequency spectrum.
Interference management is recognised as one of the key challenges in literature and it has attracted
a lot of research efforts over the past few years. Centralized and distributed approaches are the two
mainstreams in the past literature. Generally, the centralized approach requires frequent and heavy
information exchange between the central controller and each mobile agent. With the random and
large scale deployment of femtocells, centralized control is more difficult to be realized in prac-
tice. Therefore, more and more researchers focus on designing distributed and efficient interference
management schemes for femtocell network.

In the literature, there are three access modes for macrocells and femtocells to share or rather com-
pete spectrum, namely open, closed and hybrid access mode. In open access mode, the MUE can
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Figure 1: Illustration of a simplified femtocell network and the interference cases. The solid ar-
rows are the designated communication links. The dashed arrows indicate interferences to the base
stations in the uplink. Link 1,2,4 are cross-tier interferences and link 3 is co-tier interference.

connect to any Base Station (BS) it prefers. In closed access mode, the MUE is only allowed to
connect to the designated Macro Base Station (MBS), it is not allowed to connect any Femtocell
Access Point (FAP). In hybrid access mode, the FAPs will share some spectrum resources with the
nearby MUEs based on some pre-designed sharing policy. One of the challenges is to design a good
hybrid access scheme to balance between the QoS of the out coming MUEs and the local FUEs
which belong to the designated FAP. A detailed analysis and comparison between open, closed and
hybrid access is given in [12] and [13]. In this paper, the work is based on the closed access mode.

The two basic approaches to mitigate or avoid interferences in femtocell network are power control
and channel allocation. A general coverage of the various previous interference mitigation methods
can be found in [1]. A list of various interference scenarios and classification is also provided. In
this paper we will focus on the learning methods proposed over the past few years. To the best of the
writer’s knowledge, there have been several papers applying reinforcement learning techniques to
solve the interference problem over the past two years. It is natural and more popular now to assume
the mobile users, both FUEs and MUEs, and the FAPs are selfish agents. They compete the limited
spectrum resources and try to maximize their own data rate and save their own limited power. This
is a well defined mixed task stochastic game as explained in [6]. Multi agent reinforcement learning
algorithms are frequently employed to solve this kind of problem. In [2], Q-learning is used to
solve the optimal downlink power allocation of the FAPs. The FAPs can select among a finite
set of transmission power levels to maintain interference to the MUEs at a desired value. In [3],
being aware of the slow convergence problem in Q-learning algorithm, a Q-learning initialization
method is proposed to deal with the convergence speed. Both [2] and [3] assume there is an initial
training phase to learn the optimal policy for power allocation, then the FAPs follow the learned
policy to allocate power in all the channels. In [4], Q-learning is used to select the transmission
channels for the FAPs to avoid interference to the MUEs. In [8], the authors assume open access
mode and they try to solve the cell selection, also called handover problem by using Q-learning. In
[9], the authors proposed a new reward function based on [2] and argued that the design of reward
function will affect the convergence speed. A cooperative learning objective based on information
communication among the learning agents is also provided in the paper. In [5], Q-learning, fictitious
play and replication dynamics are compared to each other in terms of convergence speed. The
authors concluded that better overall performance and faster convergence are achieved at the expense
of more information exchange among learning agents.

In this paper, we study the power control problem of the FUEs in the uplink channel. All the papers
mentioned above talk about how the FAPs allocate power to different downlink channels to either
reduce or avoid interference to the MUEs. The power allocation policy is learned in the initial
learning phase, once learned, the FAPs will follow the policy. However, in practice, the environment
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is changing all the time, the optimal policy will also change with the environment. In the uplink
case, each FUE keeps adapting its own transmission power in consideration of its own channel
condition, interference received from others and interference to others. In the closed access mode, it
is not always possible to satisfy the target data rates for all users, especially when the co-channel user
density is above some threshold. In the uplink case, the FUEs keeps interacting with the environment
to maximize its own throughput. So the best policy is not a fixed set of levels of power, but a good
power adaptation policy.

This paper is organized as follows. Section II sets up the system model used in the paper. Section
III introduces the Q-learning algorithm and its application to our problem. Numerical results is
analysed in section IV. And finally we give conclusions and future roadmap in section V.

2 System Model

In this paper, we consider a network with one MBS and Nf FAPs. The MUEs are randomly dis-
tributed in the cellular network and in the coverage area of a FAP, the FUEs associtated with the
FAP are uniformly distributed. A simplified version of the network is illustrated in Figure 1. We
assume an OFDMA system. But we do not consider the channel selection problem, we deal with the
power control problem in each single sub-channel separately. At each time slot, in each FAP, only
one FUE is allowed to transmit. So within each FAP, it is orthogonal TDMA scheduling.

Denote the maximum transmission power of the FUE as P fmax and the maximum transmission power
of the MUE as Pmmax. Denote the target signal to interference noise ratio (SINR) of the MUE as γmT
and the target SINR of the FUE as γfT . The target SINR is the minimum SINR required by the
mobile user for reliable data transmission. Mobile users will intelligently adjust transmission power
by learning from the environment to satisfy the SINR requirement and save energy at the same time.

The instantaneous SINR of FUE i, which is associated with a designated FAP, in a certain sub-
channel can be written as

γfi =
pfi g

f
i

σ2 +
∑
j∈Im pmj g

m
j +

∑
j∈If p

f
j g
f
j

(1)

where pfk and pmk denote the transmission power of FUE k and MUE k respectively. gfk denotes
the channel gain between FUE k and the designated FAP. gmk denotes the channel gain between
MUE k and the designated FAP. σ2 is the channel noise power. If is the set of all the interfering
MUEs transmitting in the same sub-channel. Im is the set of all the interfering FUEs in the same
sub-channel.

Similarly, the SINR of MUE i, which associated with the MBS in a certain sub-channel can be
written as

γmi =
pmi h

m
i

σ2 +
∑
j∈Im pmj h

m
j +

∑
j∈If p

f
j h

f
j

(2)

where all the channel gains h are between the corresponding mobile user and the MBS. The through-
put of the channel can be calculated as follows:

c = log2(1 + γ) (3)

3 Application of Reinforcement Learning

3.1 Reinforcement learning

In this part, we will introduce the Q-learning model. Q-learning is one of the many algorithms to
solve the discrete Markov decision problem (MDP). In discrete MDP, the system is modelled as
a Markov chain and the system state jumps randomly from one state to another state in discrete
time steps [11]. Formally, a finite state and action spaces single agent MDP can be defined as a
tuple (S,A, f, r), where S is a finite set of environment states, A is a finite set of agent actions,
f : S × A × S → [0, 1] is the state transition probability function, and r : S × A × S → R is the
reward function [6]. Denote sk and ak as the state of the system and action of the agent at discrete
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time step k respectively. The immediate reward received by the agent after taking action ak and
the resulting state transition from sk to sk+1 can be written as rk+1 = r(sk, ak, sk+1). A decision
policy is defined as π : S → A, which tells the agent which action to choose given the current state.
The aim of the agent is to find an optimal policy π∗ to maximize some performance metric.

The expected discounted reward given the policy π and initial state s is given by:

V π(s) = Ef


∞∑
j=0

γjr(sj , π(sj), sj+1)|s0 = s

 (4)

where γ ∈ [0, 1) is called the discount factor. It is used to bound the summation and can be inter-
preted as we have more uncertainty in the future reward. π(sj) denotes the action taken at state sj .
V π(s) is also called the value function of state s given policy π. Notice that the expectation is taken
over the probabilistic transition function. In deterministic model, the transition probability function
is fixed to a specific transition function and the expectation can be saved. Another way to write the
value function of state s is

V π(s) = Ef {r(s, π(s), s′)}+ γ
∑
s′∈S

f(s, π(s), s′)V π(s′) (5)

This is also called Bellman equation. The first term is the expected immediate reward we get after
taking action π(s) in state s. The second term is the expected sum of the discounted rewards starting
in state s′, where s′ is the next state after state s and follows the distribution given by the transition
probability function f .

In Q-learning, the action-value function, also the Q-value is defined as the expected return of a state-
action pair given some policy π: Qπ(s, a) = E

{∑∞
j=0 γ

jrk+j+1|sk = s, ak = a, π
}

. The optimal
Q-value is defined as Q∗(s, a) = maxπQ

π(s, a) Given all the above definitions, the Bellman opti-
mality equation can be written as

Q∗(s, a) = E{r(s, a, s′)}+maxb∈A
∑
s′∈S

γf(s, π(s), s′)Q∗(s′, b) (6)

To compute the optimal Q-value for each state-action pair, Q-learning algorithm estimates the opti-
mal Q-value by an iteration approximation procedure. The update equation is

Q(s, a) = (1− µ)Q(s, a) + µ[r(s, a, s′) + γmaxb∈AQ(s′, b)] (7)

where µ ∈ (0, 1] is the learning rate. The learning rate is typically time varying and decreases with
time. From the update equation we can see that the Q-learning method is model-free. It does not
require any prior knowledge about the state transition probability or reward function. Both of them
are acquired on-line in simulation. One of the conditions to guarantee the convergence of Q-learning
is the agent has to keep trying all actions in all states with non-zero probability [6]. To satisfy this
condition, the ε-greedy exploration procedure is incorporated into the Q-learning algorithm. That
is, in each iteration, the agent chooses a random action with probability ε ∈ (0, 1) and chooses the
greedy action that will maximizes the Q-value with probability 1− ε.

3.2 Problem Formulation

In this paper, we assume there is no information exchange among the learning agents. However, we
assume the FUEs and MUE will get their SINR information from the corresponding BSs instanta-
neously through some feedback channel. The learning agents, actions, states and reward functions
are designed and explained as follows:

• Agents: The learning agents are the FUEs and the MUE associated with the only MBS
in the considered channel. If there are Nf FAPs, there are Nf + 1 learning agents in the
system. They adapt their transmission powers by learning from the environment indepen-
dently. However, their action will inevitably affect each other’s channel condition, i.e. the
SINR parameter as given in equation (1) and (2) . These agents will learn to reach the
optimal equilibrium if there exists one for any given simulation scenario. We assume equal
importance of all the users in the system in this paper. As we are discussing the uplink
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communication channel, the main interference is actually from MUE to nearby FUE and
neighbour FUEs’ co-tier interference, thus we do not give the MUE any priority over any
FUE. Because this is a closed access mode system, when the number of learning agents
increases, some users may not be able to satisfy their target SINRs or data rates.

• Actions: There are three actions for each agent in almost any state. To increase the trans-
mission power, to keep it or to decrease it. Ai,t = A = {0 : decrease tranmission power; 1 :
keep current transmission power; 2 : increase transmission power.∀i}. Two boundary
cases are: 1) when the agent tries to decrease its power to negative value, we floor its
transmission power by zero. That is, the agent chooses to keep silent in certain kinds of
states. 2) when the agent tries to increase its power above the maximum transmission
power, we ceil its power by P fmax or Pmmax. These two boundary special treatments are
necessary as validated in simulations. If we allow the agents to choose any transmission
power they prefer, the power competition will increase with iterations and it never falls
back to the normal state. This is due to the selfish nature of the learning agents. No agent
will start first to decrease its own transmission power to suffer the lower transmission rates.
The step size of the power change will be adjusted in the simulation and has significant ef-
fect on the convergence and behaviour of the final learning curve. Contrary to most existing
paper, in which a fixed set of transmission power levels are pre-determined to be selected
by all the agents, our scheme allows more freedom in the agent’s action. This design also
results in a different pattern of convergence compared to the existing papers and this will
be further explained in the simulation section.
• States: The state of learning agent i at time t is represented as a tuple of three indicators:
si,t = {Iiγ,t, Iip,t, ait−1}. Here ait−1 is the action performed by agent i at discrete time step
or iteration t− 1, the last time action. Iiγ,t and Iip,t are defined as follows:

Iiγ,t =

{
1 if γi ≥ γiT
0 if γi < γiT

(8)

Iip,t =

{
1 if pi ≥ P imax
0 if pi < P imax

(9)

Since there is no information exchange among learning agents, an agent can only monitor
and learn from its own past actions, transmission power and SINR statistics. Initially, I
planned to monitor a five element tuple, including the last time SINR and last time trans-
mission power besides the given three elements. But due to time limit, I make it simplified
now. Basically, the more states and actions, the more need to worry about the convergence
issue in simulation.
• Rewards: Finally the reward function is defined as follows:

ri,t =

{
ln(

ci,t
cT

) + exp(− pi,t
P i

max
) if 0 ≤ pi,t ≤ P imax

−3 if otherwise
(10)

The reward function is designed in order to encourage maximum date rates and relatively
efficient transmission power. All the other states will be punished. The design of reward
function is quite flexible and parameter can be tuned in simulation. The Q-learning algo-
rithm used in the simulation is given in algorithm 1.

4 Numerical Results

In this section we present some numerical results from our simulation. The learning rate is α =
90/(100+ iteration). Some learning parameters are given in the figure caption. When you read the
figures shown below, you may wonder why the channel capacity curve does not converge to a strict
line. It instead oscillates in a small interval. This is due to my design of the agent action. The agent
learns to increase or decrease or remain the transmission power to keep the equilibrium with the
outside environment. The agent is not fixed to a certain power level as in existing papers. It learns to
dynamically adjust its power and track the environment, i.e. the other agents. Actually, these agents
learn by tracking the others and their aim is to track the environment to adjust transmission power.
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Algorithm 1 Distributed power control

procedure Q-LEARNING
Initialize all Q-values to 0. Qi(a, s) = 0 ,∀ a ∈ A, s ∈ S, i.
Initialize the states si,0 = (γi,0, pi,0, ai,0),∀i
while iteration do

for all i do
if rand() < ε then

choose a random action available in current state si,t
else

choose the greedy action ai,t = argmaxai,t Q(si,t, ai,t)
end if

end for
Perform selected action and obtain next state S = {si,t+1,∀i}
for all i do

update Qi(si,t, a) := (1− α)Q(si,t, a) + α[r + γmaxbQ(si,t+1, b)]
end for

end while
end procedure

Figure 2: Illustration of the effect of exploration rate ε. As ε increases, it takes more iterations to
converge. 1000 iterations, 6 learning agents, ε = 0.1, 0.2, 0, 7, 0, 9 from left to right, from top to
down side.

So finally, when they learned the policy, their transmission power, as a result the capacity will still
oscillate in a small interval, instead of keeping a constant power level.Figure (2) shows that as the
exploration parameter increases, the learning takes a longer time.

Figure (3) illustrates a common phenomenon in the closed access femtocell network. All the other
curves except the blue curve have converged to some policy. Now the blue agent is a dominant
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Figure 3: Who is playing and who is learning?

interference source in the network. By observation, on can find that the other curves are tracking
the high variation blue curve. Whenever the blue curve goes down, the others’ throughputs are in-
creased. But since the agent is selfish, it has no incentive to cooperate with others in our formulation.
It has a good channel condition and the other agents have less interference to it. So the blue agent
can choose any action at any state. All the other users have to maintain a relatively high transmission
power to combat the interference from the blue agent. The blue agent is the MUE. In this case, the
femtocell network users suffer because of the nearby MUE.

5 Conclusions

In this paper, we introduced Q-learning algorithm to solve the power control problem in uplink
closed access femtocell network. The simulation results show that most of the time, the FUEs will
suffer from the nearby interfering MUE. Although the FUEs can learn to converge to an equilibrium,
the system is far from optimal. Future work will investigate the use of learning algorithm in open
access and hybrid access femtocell network. One direction is to learn a joint cell selection and power
control policy.
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