Job Salary Prediction

Anonymous Author(s)
Affiliation
Address
email

Abstract

Kaggle is an online platform for machine learning and analytics competitions
where companies post data and individuals post solutions to compete for mon-
etary prizes and to hone their skills [1]. Recently Adzuna, a UK based classifieds
company, hosted a Kaggle competition with the goal of improving job salary pre-
dictions for job postings in which the salary does not appear. Using various lin-
ear models, random forests and neural network implementations we were able to
achieve an mean error 84933 corresponding to the top 6% of the of the com-
petitors. This paper describes the details of our feature selection and modeling
methods.

1 Introduction

Often when job advertisements are posted online, the employer neglects to mention the salary. To an
individual looking for a job, this poses a dilemma; do they risk wasting valuable time investigating
a low paying job, or skip the advertisement and risk ignoring a great opportunity.

Adzuna, a UK based classifieds company hosts many job advertisements; approximately half of
which do not list a salary. In order to provide better services to its user base, Adzuna wants to give
accurate salary estimates for job postings for which the true salary is not provided. To this end,
Adzuna hosted a Kaggle competition with the goal of improving job salary predictions [1].

This paper explores the performance of four different regression techniques applied to the Adzuna
data. Section 5 deals with linear models while subsequent sections explore random forest regressors,
gradient boosted tree regression and neural networks. With the exception of the neural networks
which were implemented with Vowpal Wabbit [2], the remaining models were implemented with
standard classes from the 0.13.1 scikit-learn Python distribution [3].

Unfortunately, we did not finish our work in time for the competition. However, our best models are
very competitive placing us in the top 6% of the competition when run on the withheld testing data.

2 Data Structure

The training data for the competition consists of a .csv file of approximately 245 000 job postings

with the information in each job posting arranged in 12 fields. These fields included free text title,

description and location descriptors along with additional categorical fields such as contract type
(permenant or contract), contract time (part-time or full-time), company, etc.

The goal of the competition is then to predict the salary given the non-salary fields. The loss function
specified by the competition is the mean absolute error on a withheld testing set.

3 Benchmarks

Adzuna provided two benchmarks against which the efficacy of user submitted models could be
tested [1]. The first of these simply output the mean salary of the training data. The second of bench-
mark was based on a random forestimplementation. In this implementation the title, description, and
location fields were vectorized, resulting in a vector consisting of the number of occurrences of the
hundred most common unigrams (single words) in each field. This vector representation of the job
postings was the used to train a scikit-learn random forest regressor. The benchmark performances
are summarized below in Table 1.

Model Error
Mean Benchmark £13253
Random Forest Benchmark £7633

Table 1: Adzuna benchmark performance

4 Feature Extraction

Due to the limited scope of this project, we decided to use bag-of-words models rather than more
advanced feature extraction techniques. For the linear and forest models investigated in the later
sections, the scikit-learn count vectorizénplementation was used to extract unigram and bigram
(collections of two words) features from the title, description and location fields while the remaining
training fields were treated as categorical variables. To avoid memory issues and excessive training
times, any features with relative frequency of less than 0.01% were ignored.

The implementation of the neural networks of section 8 was performed by my partner who took a
slightly different approach to feature extraction. Rather than using a count vectorizer, my partner
used a hashing vectorizer to extract featdreslthough this form of feature extraction is much
faster, it sometimes encounters problems when two or more features hash to the same index. This
effect can be mitigated however, by choosing a hash function with a sufficiently large range.

For ease of notation, training sets consisting of categorical and unigram features will be referred to
simply as unigram features. Likewise, training sets consisting of categorical, unigram and bigram
features will be referred to as bigram features.

5 Linear Models

Kaggle user Foxtrot demonstrated that linear models could exceed the performance of the random
forest benchmark provided by Adzuna, achieving an errdi6dt34 [4]. We reasoned that features
with large weights in linear models would make ideal features for our random forest implementation.

As our primary reason for investigating linear models was to find a small number of highly predictive
features, we opted to use lasso regression rather than ridge regression in fitting the models. As
shown in Equations 1 and 2, the loss function of lasso regression differs from ridge regression by
the replacement of thb? regularizer with arL.* regularizer. With ridge regression, the coefficients

6 go slowly to 0 as the regularization coefficient is increased. With lasso regression, on the other
hand, the regularization parameter serves to set the weights of weakly correlated features identically
to zero. Additionally, if two features are highly correlated with one another, lasso regression will
select one of them and set the coefficient of the other to zero. As such, lasso regression is ideally
suited as a method of feature selection; with an appropriate choice of the regularization parameter
we will be able to select predictive, near orthogonal features.

1The scikit-learn class CountVectorizer [3] constructs a dictionary of unique tokens from the training cor-
pus. Each time a token is encountered in the fitting procedure, the value corresponding to that token in the
document’s feature vector is incremented. Preliminary investigation showed that the linear models gave the
best predictions when a feature was simply given as present or absent as opposed to the total number of occur-
rences. For this reason, the results of the subsequent sections are based on binary feature vectors.

2Instead of using a dictionary to record unique tokens, a hashing vectorizer uses a hash function to map
features directly onto indices.

Jridge(y) = (Xa - y)T (Xe - y) + OZGTG (1)

Jlasso(y) = (X0 - y)T (Xa - Y) +a ||0||1 (2)

5.1 Results

Figure 1 summarizes the performance of our linear models for various choices of the regularization
parameter, while Table 2 lists the performance of the two best linear models on the test set. Note
that we were able to exceed the performance of the benchmark as well as Foxtrot’s model.

7500 —

7000 —| unigram lasso model ©

bigram lasso model o

6500 — —

Mean absolute error (£)

T T T T T T
10”-6.0 107-5.5 10”-5.0 10~-4.5 10~-4.0 107-3.5

o

Figure 1: Performance of the linear models on the withheld test set for a range of regularization
parameters.

Model Error
Unigram Lassog = 4 - 10~ | £6201
Bigram Lassoq =4 -10° | £6112

Table 2: Linear model performance

6 Random Forests

6.1 Feature Selection

The features used in the random forest benchmark are obviously less than ideal; if one simply
selects the most common unigrams from each field, the resulting feature vector will be dominated
with words such as “and”, “the” and “it”. These words will appear in nearly every job posting and
their ability to distinguish between job postings will be limited.

In an effort to avoid this issue, two different techniques were used to select relevant features from
the corpus. As shown in the previous section, properly optimized linear models were able to beat
the random forest benchmark by sound margins. By using the features with the largest weights in
the linear models, it should be possible to duplicate this success with random forest models.

Although linear models are able to select features with strong correlation to salary, they are unable
to select descriptive features with net zero correlation (perhaps due to nonlinearities) or distinguish
between features which have very high correlation to salary but which occur infrequently throughout

the corpus. Taking the deficiencies of the linear model selection into account leads us to consider
information gain (Equation 3) as a method of determining the relevance of features.

M M
G(f) = Pr(ci)log Pr(ei) + Po(f) D Prleilf) log Pr(eilf)
=1 u 1=1
+ P(f)> Pr(cil f)log Po(cil f) 3

=1

By dividing the training data inta groups based on salary, it is possible to use information gain as
defined in Equation 3 [5] to select featurgs,which discriminate between different salary ranges,

¢;, (while having near zero overall correlation). For the purposes of this project, the advertisements
were divided into five equal groups corresponding to jobs with salaries ib'ttte 20t" percentile,

20" to 40" percentile, etc.

6.2 Optimization

The random forests used here are slightly unusual in that each forest considers only the square root of
the number of features at each node and that the forests are grown until no additional information can

be extracted from the leaves (i.e. the maximum depth parameter is set to some very large number).
The first of these conditions may be understood as a method of simultaneously increasing variance

between trees while reducing the training time of the regressor.

The second condition essentially enforces the idea that when dealing with documents it is advanta-
geous to consider a wide variety of features before making a decision. If the maximum depth were
set to some small numbar each tree would consider the presence or absence of only a small num-
ber of features before regressing the document. Figure 2 demonstrates that when choosing between
models of equal training complexity it is advantageous to favor tree depth over the number of trees
in the forest.

11000 —

unigram, 1000/0 split
L unigram, 800/200 split
unigram, 600/400 split
bigram, 1000/0 split
— bigram, 800/200 split
bigram, 600/400 split

10000 —

0000

9000

8000 —

Mean absolute error (£)

40/10 20/20 10/40 5/80
Depth / Number of trees

Figure 2: Random forest performance at constant training complexity. All models were trained
on a 20% / 80% split of the training data for 10 trees with the linear features selected from the
corresponding linear model with = 10~*. Had the models been trained on an 80% /20% split, the
training time would have been prohibitively large. Note that the errors given here are given for the
80% validation data, not the withheld testing set. We found that there was very little difference in
performance between forests with a maximum depth of 40 and unlimited depth forests.

To find the optimal set of features, many small (10 tree) random forests were trained on 20% of the
data using various combinations of features selected from the linear models of the previous section
and the information gain metric defined above. The results of this search are shown below in Figure
3 for models with a total of 1000 features. Note that the best results are not obtained by selecting
features from the best linear models, but rather from models with a much smaller number of non-zero
weights (larger regularization parameters).

Surprisingly, the best model results from selecting 1000 unigram features with an 800/200 split of
linear model features to information gain features. This result is rather counterintuitive as you might
expect the bigram models to be better at discriminating between documents. Examining the density
of the training matrix sheds some light on the situation. As shown in Table 3, the training data of

12000 —
11000 - - bigram, a=5e-4
bigram, a=1e-4
* bigram, a=2e-5
unigram, a=5e-4
unigram, o=1e-4
unigram, a=2e-5

10000 —

0 0 0 0

9000 —

8000 —

Mean absolute error (£)

7000 -

1000/0 800/200 600/400 400/600 200/800 0/1000

Linear features / information features

Figure 3: Random forest error at constant training complexity with 1000 features. All models were
trained on a 20% / 80% split of the training data for 10 trees with the linear features selected from
the linear model indicated in the legend. The x-axis denotes the split between features selected from
the linear models and features selected by the information gain criteria.

the best unigram models is denser than that of the corresponding bigram models. This indicates that
we are selecting bigram features that discriminate very well between income levels but that are not

present in the majority of the samples. As such, at least for small numbers of trees, we find that our

feature selection process works best for selecting the more common unigram features.

Model Density

Unigram RFR, 800/200y = 1-10~% | 0.0191
Unigram RFR, 800/120Qy = 1-10~* | 0.0113
Bigram RFR, 800/200y = 1 - 10~ # 0.0137

Bigram RFR, 800/120a = 1-10-% | 0.0073

Table 3: Density of random forest features

6.3 Results

Using the results of the previous section, it can be seen that the best models used linear models with
the weight of thel.! regularizer set tax = 1 - 10~%. Rebuilding these models with 50 trees and
training on the entire data set gives the results summarized in Table 4. Note that the best of these
models surpasses the random forest benchmark byE2@80. All of the models in Table 4 would

have placed in the top 10% of the competition.

Model Error
Unigram RFR, 800/200y = 1-10-% | £5000
Unigram RFR, 800/120Qy = 1 - 10—* | £5003
Bigram RFR, 800/200y = 1 - 10~ * £5138
Bigram RFR, 800/120Qy = 1-10~* | £5094

Table 4: Performance of the four best random forest models

7 Stochastic Gradient Boosting

Stochastic gradient boosting [6] is a powerful technique for greedily training regression models.
Developed in 1999 by Jerome Friedman [7], gradient boosting works by greedily building a function
which minimizes some specified loss function. SpecificallyLIgt) be our loss function where we
treatf as a function of the sampleB,= (f(x1), ..., f(xn)). We then solve fof stepwise using
gradient descent. At the'" iteration we findg,,,, the gradient of(f):

OL(ys, f(x1))
Gim = {af(x) 4)
1 f(xi):fm—l(xi)
The estimate of at them!" iteration is then:
fm —Im—-1—)\gm (5)

Where is known as the learning rate and must be chosen appropriately for optimal convergence.
This can be made into a useful algorithm by fitting a weak learner, such as a decision tree, to the
residuals to approximate the gradient function [6, 7].

In the case of stochastic gradient boosting regression, the algorithm above is simply modified so
that the residual is computed for some sub-sampling of the total data. According to Friedman, this
serves to both act as a form of regularization which prevents overfitting and reduce the computation
time [7]. As such, all of the base learners for the models discussed in the subsequent sections were
trained on random samplings of 50% of the data with a least squares loss function.

7.1 Optimization

Unfortunately we did not have sufficient time or computational resources to fully optimize the gradi-
ent boosting implementation (In total this project consumed over 1000 processor hours on personal
computers). Rather than optimize the split between information gain and linear features, the num-
ber of features per split, the maximum tree depth and the learning rate, we took a simpler though
certainly less optimal approach.

Firstly, because the unigram random forests consistently outperformed the bigram random forests,
the gradient boosted tree regressors (GBRs) were trained only on unigram data. Since the algorthim
uses decision trees as its base estimators (like the random forests previously discussed) we made
the simplifying assumption that the 800/200 feature split of the previous section would be an appro-
priate split. Next, we noted that the training time of the model is approximately linear in both the
maximum tree depth and number of features to consider per split (fps). We then tested four different
configurations of constant product between maximum tree depth and number of features for a range
of the learning rate parametér These models were trained with a total of 20 trees on 20% of the
training data. The results can be seen in Figure 4.

& 9500 -

S

5 9000 -

o max depth =5, 1000 FPS ©
5 8500 L maxdepth =10,500 FPS ©
3 max depth = 20, 250 FPS ©
S 8000 | maxdepth =40, 125FPS ©
[

3 7500 L

=

T T T T T
2r.3.0 225 2020 2015 20.1.0
A

Figure 4. GBR performance at constant training complexity. All models were trained on a 80% /
20% split of the training data for 20 trees with the linear features selected from the best unigram
linear model of section 5 with the learning rate paramatas given on the x-axis.

7.2 Results

From Figure 4 the fastest converging model was the model with a maximum tree depth of 40 and
which considered 125 features per split (note that this is very similar to the results of the previous

section). This model was retrained on the entire training set with 100 trees for a rargd bé
results are summarized below in Table 5.

Model Error
Unigram GBR = 1.25- 10! | £5362
Unigram GBR\ = 6.25 - 10~2 | £5326
Unigram GBR\ = 3.13 - 10~2 | £5640

Table 5: Performance of the three best gradient boosted models

8 Neural Networks

Like random forests, neural networks can be effective non-linear regressors. We considered a neural
network consisting of an input layer, a single non-lineanf) hidden layer and a linear output layer

with anL? regularizer. The network was implemented with Vowpal Wabbit [2] and was trained on
unigram data vectorized by a hashing vectorizer as discussed in section 4.

8.1 Results

To achieve optimal performance, we performed an axis-aligned grid search (alternating between
optimizing the regularization parameter and the number of neurons in the hidden layer), until con-
vergence was achieved. Below, Figure 5 plots the performance of the neural network as a function
of the number of neurons in the hidden layer at the optimal value of the regularization parameter
Additionally, the performance of the best neural network is given in Table 6

7500 — -

7000 — -

6500 — -

Mean absolute error (£)

T T T T
2 4 6 8

Number of neurons

Figure 5: Performance of the neural networks as a function of the number of neurons in the hidden
layer at the optimal value of the regularization parameter. All models were trained on a 80% / 20%
split of the training data.

Model Error
Unigram Neural Networky = 1.2-10~7 | £5817

Table 6: Performance of the best neural network model

9 Conclusions

Although we did not achieve the best results in the competition (the top performing method scored
an average error @3465 [1]), many of our methods scored in the top 10% of the competition with
our best method corresponding to tH& percentile. These results are summarized in Table 7 which
lists the performance of the best model for each regression technique.

Most importantly, we demonstrated that linear models and information gain can be used to extract
predictive features from text documents. Models based on these features consistently outperformed

the random forest benchmark provided by Adzuna. Additionally, we showed that while the inclusion
of bigram features improved the linear models, it did not necessarily improve the predictive capabil-
ities of our random forests. With our current feature selection mechanism, the bigram features were
simply too sparse to impart any advantage over the unigram features.

Model Error
Bigram Lassoq = 4 - 10°° £6112
Unigram RFR, 800/200y = 1-10-% | £5000
Unigram GBR, 800/200) = 6.25 - 102 | £5326
Unigram Neural Networky = 1.2-10~7 | £5817
Aggregate RFR £4933

Table 7: Performance of the best models for each regression technique. The “Aggregate RFR” model
is a linear combination of the four best random forest models of section 6. This model was able to
outperform all of our other models and achieved a ranking &f bt of 294 competitors.

Due to time and computation constraints, the GBR models were not fully optimized. Additional
work could concentrate on further improving these models, perhaps using gaussian process opti-
mization to explore the high dimensional parameter space.

Additionally we would like to explore the possibility of further optimizing our feature extraction
and selection techniques. In future work we would like to include features based on document
statistics (document length, average number of words, Flesch-Kincaid readability statistics, etc) as
well as features based on similarities between documents (perhaps using latent dirichlet allocation,
an unsupervised learning technique which assumes that the distribution of words in a document is
indicative of underlying categories [8]).

References

[1] Kaggle. Job Salary Predictionhttps://www.kaggle.com/c/job- salary -
prediction

[2] John LangfordVowpal Wabbit (Fast Learninghttp://hunch.net/ ~vw/ . 2013.

[3] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python "Jturnal of Machine Learn-
ing Researci2 (2011), pp. 2825-2830.

[4] Foxtrot. Predicting advertised salarieshttp : //fastml. com / predicting -
advertised-salaries/ . 2013.

[5] Yiming Yang and Jan O Pedersen. “A comparative study on feature selection in text categoriza-
tion”. In: MACHINE LEARNING-INTERNATIONAL WORKSHOP THEN CONFERENCE-
MORGAN KAUFMANN PUBLISHERS, INC. 1997, pp. 412-420.

[6] Kevin Murphy. “Machine learning: a probabilistic perspective”. In: MIT Press, 2012. Chap. 16,
pp. 554-563.

[7] Jerome H Friedman. “Stochastic gradient boosting”damputational Statistics & Data Anal-
ysis38.4 (2002), pp. 367-378.

[8] David M Blei, Andrew Y Ng, and Michael | Jordan. “Latent dirichlet allocation”. the Jour-
nal of machine Learning researéh(2003), pp. 993-1022.

