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Abstract

Detection, Labeling, and segmentation of the spinal column from CT images is
a pre-processing step for a range of image-guided interventions. State-of-the art
techniques have focused either on image feature extraction or template matching
for labeling of the vertebrae followed by segmentation of each vertebra. Recently,
statistical multi-object models have been introduced to extract common statistical
characteristics among several anatomies. These models have also been used for
joint labeling and segmentation of the lumbar spine and were shown to be robust,
accurate, and computationally tractable. In this paper, I reconstruct a statistical
multi-vertebrae pose+shape model and utilize it in a novel framework for labeling
of an arbitrary vertebra in a CT image. I also use the model for segmentation of
the entire vertebral column. I validate my technique in terms of accuracy of the
labeling and segmentation of CT images acquired from 61 subjects. The verte-
bral column is correctly labeled in 97% of the subjects and mean distance error
achieved for the segmentation is 2.1±0.7 mm.

1 Introduction

Accurate segmentation and labeling (sometimes referred to as identification) of individual verte-
brae from Computed Tomography (CT) images is a necessary pre-processing step in a range of
image-guided therapy applications such as insertion of pedicle screws or spinal implants. It is also
beneficial for many other applications that use vertebrae as anatomical landmarks.
Figure 1 shows an illustration of these procedure that are performed on 3D CT images. Detection
of the vertebrae is usually performed by finding the characteristic shape of the vertebrae in the CT
images using Generalized Hough Transform [4], which is computationally intensive and generate
many false positives. The automatic identification of the vertebrae is also challenging due to the
repetitive nature of these structures and the variability of images in resolution and field-of-view.
The latter becomes more important when the reference structures that are typically used for labeling
(e.g., the first cervical or the first thoracic vertebra) are missing from the image. Previous research
has addressed the identification problem [5, 7]. However, to the best of my knowledge, only two
works have handled labeling of the vertebral column in arbitrary scans [3, 4]. Klinder et al. build a
template (mean shape) of each vertebrae and performed affine alignment between each template and
vertebrae that are detected in the CT image. They reported the best match as the label [4]. Given
the large number of alignment, the identification phase was reported to take up to 45 minutes for
12 thoracic vertebrae. Glocker et al. addressed the identification problem by performing a random
forest classification on the image features [3]. Although the results were promising, this technique
might not be applicable to CT images with a small field-of-view or those that are reduced in-plane
showing only a small region around the vertebrae with little structural context. Moreover, this tech-
nique only provides labeling, not segmentation.
The segmentation task remains a challenge despite the high contrast of bony structures in CT im-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

(a) (b) (c) (d)

Figure 1: a) A slice of a 3D CT image which includes thoracic (T1-T12) and lumbar (L1-L5)
vertebrae. b) Detection of the vertebrae on the CT images. c) Identification (labeling) of the detected
vertebra. d) segmentation of the identified vertebra.

(a) (b)

(c) (d)

Figure 2: a) three examples of T1 (first thoracic) vertebrae from three different patient. b) An
example of T1-T2-T3 vertebrae of a patient. c) Thee examples of L1 (first lumbar) vertebrae from
three different patients. d) An example of L1-L2-L3 vertebrae of a patient.

ages. This is due to the presence of unclear boundaries, the complex structure of vertebra, and
substantial inter-subject variability. A rich body of literature exists on segmentation of the vertebral
column from CT images [1, 4, 5, 6, 10, 11, 12]. Conventinoally, segmentation of the vertebral col-
umn is performed for the individual vertebrae separately, which has several disadvantages. A clear
boundary may not exist in regions between two vertebrae such as in the intervertebral disk and facet
joints, which may lead to mis-segmentation or an overlap between the segmentation of consecutive
vertebrae. Moreover, some anatomically useful information is discarded, such as the common shape
variations among vertebrae.

1.1 Proposed framework

Although previous works tried to solve the problem of identification by finding image feature, I
believe that such complex task can be performed by shape comparison. Looking at Figures 2a
and 2c, there are difference within the population of each vertebrae. However, some characteristic
differences can also be detected between the shape of different vertebrae. For example, thoracic
vertebrae are more stretched in certain direction or have larger transverse processes. Differences
can also be detected in other aspects of the data. Looking at Figures 2b and 2d, the relative position
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of vertebrae can be used for identification. The spine curvature is usually larger around Lumbar
vertebrae. Given that, I propose to generate a statistical model that can capture the variations of
shapes and poses among different vertebrae. I will illustrate my technique to align these model to
the CT images to best fit the target vertebra. I will also demonstrate my labeling technique that uses
random forest where hyper-parameters are optimized using Bayesian optimization.

2 Methods

2.1 Construction of the multi-vertebrae model

For construction of the model, pose statistics are separated from the shape statistics since they are not
necessarily correlated and do not belong to the same space. Pose, which is represented by a similar-
ity (rigid+scale) transformation, form a Lie group, G, which is a group and a differentiable manifold
and thus linear analysis is not applicable. However, the exponential mapping, g : exp(x) → G,
and its inverse, logarithm mapping G : log(x) → g, can be used to transfer the elements back and
forth from a tangent space, g (which is a linear space), defined at identity element of the group.
Analogous to principal components in the Euclidean space, Principal Geodesics (PG) are defined
for Lie groups. The approximation is as follows [2]: for a set of elements, x1, . . . , xn, the mean,
µ, is found using an iterative approach suggested by Pennec [8]. Principal Component Analysis
(PCA) is then applied to the residuals in the tangent space at the mean, log(µ−1xi). The results
are orthonormal principal components, vl, which give the PGs (modes of variations) by exponential
mapping, µ exp(vl).
Assume that the training set contains N instances of an ensemble of L anatomies. A group-wise
GMM-based alignment technique [9] is used to establish dense correspondences across the training
set. Generalized Procrustes analysis is then used to generate the mean shape for all the anatomies,
and their transformation, Tn,l, to each instance. The transformation for all anatomies are concate-
nated and PGs are then extracted. The results are principal geodesics, which can be written for each
anatomy. Common statistics between shapes are also extracted with the same technique.
Assume that θsk is the weight applied to the kth shape PG and θpk is applied to the kth pose PG. A
new instance of the model is generated as follows:

S = Φ(θs, θp) = Φp
(
Φs(θs); θp

)
. (1)

Note that Φp(.; θp) and Φs(.; θp) denote a pose and shape respectively, built by combination of the
PGs with corresponding weights.
The constructed model is capable of generating any n consecutive vertebrae. In other words, the
model can be used to describe the shape of an unseen target in an arbitrary CT image. The only
unknowns are then the weights that are applied to shape and pose modes of variations.
For the rest of this paper, I set the number of vertebrae in the model to three (referred to as generic
3-vertebrae model hereafter), since larger number will result in larger computational time and also
it is sufficient to encode the variabilities of a certain vertebrae and its relation to its neighbouring
vertebrae.

2.2 Alignment of the model to CT images

The model is aligned to a target CT image using the following technique. Initially a preprocessing
step is performed to extract the boundary of bony anatomies from the CT images. To this end,
CT images are smoothed and thresholded with a value of 100 Hounsfield units and a Canny edge
detector is applied to the 2D transverse planes. The result is a point set representing a rough
segmentation of the bony anatomy. Figure 4 shows an example of such enhancement. Next, an
iterative Expectation Maximization (EM) [9] alignment technique is utilized where the alignment is
considered as a probability density estimation problem. The points in the surface of the model are
assumed to be centroids of a Gaussian Mixture Model (GMM) and the edge points extracted from
the CT image are the observations. The model is then deformed using the weghts that are applied to
the modes of variation to maximize the likelihood of the GMM generating the observations.
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Figure 3

Figure 4: Result of the canny edge detection in CT images

2.3 Labeling of the target vertebra

The shape and pose coefficients derived from the alignment, [θsT, θpT]T are used as features for
the labeling. I use random forest (Matlab standard implementation) to classify these features. I also
use the Gaussian process to adjust the hyper-parameters of the random forest.
In detail, random forests is an ensemble of threes that each is a weak classifier. Each tree is
constructed by a random sub-sample of the data based on a random sub-sample of features. Each
tree contains several branches where in each branch a decision is made based on the value of a
certain feature. Usually, leaves of each tree have a minimum number of members which is set
initially by the user.
In this work, I use Gaussian process with GP-UCB as criterion to optimize the hyper-parameters
of the random forest, i.e. the number of trees, the portion of the samples used for training of each
tree, and the minimum number of elements for each leaf. In each iteration of the GP, a ten-fold
cross-validation is performed to identify the classifier accuracy with the selected parameters.

2.4 Labeling and segmentation of the entire vertebral column

Segmentation of the entire vertebral column is performed as follows. Initially a single point is se-
lected on the vertebral column regardless of its level. To do this automatically, the standard deviation
of the distribution of edges, which are found using the Canny edge detector, is computed for each
transverse plane. The plane with the smallest standard deviation is selected and the center of the
masses of the edges is chosen as the detected point. This process ensures the point falls inside a sin-
gle vertebra. Next, the generic 3-vertebrae model is initialized on the selected point and is aligned
to the edges. The labeling is then performed on the pose and shape coefficients to detect the level of
the vertebra. Labeling of a single vertebra might still be incorrect as I will show in the next section.
To address this problem and also to segment the rest of the vertebral column I perform an iterative
technique. In each iteration, the previous aligned model is used to initialize another model, either
one level superior or one level inferior. The new models are aligned and also classified. The pro-
cedure is continued till the models are out of the field-of-view. The algorithm steps are shown in
Figure 5. The labeling is further improved by constructing a matrix, P, where its elements, pn,l, are
the probabilities computed using random forest and represent the similarity of nth found vertebrae
in the CT image to the level, l. For each diagonal of this matrix, the average posterior probability
is calculated and the diagonal with the highest mean posterior probability is selected as the true
configuration of labels.

3 Experiments and Results

Experiments were carried out on CT images of 61 patients (41 lumbar and 20 thoracic scans), which
include 496 thoracic and lumbar vertebrae in total. Written informed consent was obtained from all
patients. Manual CT segmentations were performed using ITK-SNAP. The CT imaging resolution
ranged from 0.6 mm×0.6 mm×0.6 mm to 0.9 mm×0.9 mm×3.2 mm spacing.
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Figure 5: Initially a point is automatically found on the vertebral column (red cross). Next, a 3-
vertebrae model is aligned. The last vertebra of the aligned model (white arrow) is then used to
initialize the next model. This process continues until it reaches the extents of the field-of-view.
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Figure 6: Graphical representation of the generic 3-vertebrae model described by changing the
weights corresponding to the first two principal modes of pose and shape variation.

3.1 Generic 3-vertebrae model

Using the manual segmentation of the vertebrae, the generic 3-vertebrae model is reconstructed.
Figure 6 illustrates the changes in the shape of the model that result from changing the weights
corresponding to the first two pose and shape modes of the variation. 90% of the variations are
achieved by the first 3 pose modes and the first 55 shape modes. As expected, the model is not
compact in the shape space since it represents the shape of an arbitrary vertebra. I found that levels
are more identifiable from the shape coefficients than the pose coefficients.

3.2 Labeling of an arbitrary vertebra

To assess the accuracy of the labeling, the center of the mass of the generic 3-vertebrae model and
the manual segmentation are aligned. Next, the model is aligned to the edges extracted by Canny
edge detector. The shape and pose coefficients are then given as input to the classifier. I used the
first 8 shape and pose modes for the labeling (total 16 features). Bayesian optimization usually takes
between 10-20 iteration to converge. The error is reported as the difference between the correct level
and the one predicted by the classifier; e.g., for an actual level of T1 and predicted level of T3, the
error is 2 levels.
five-fold cross-validation is used for the assessment of the labeling. The level detection error has
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Figure 7: a) Error statistics for labeling of an arbitrary vertebra, which is defined as the number of
vertebrae away from corrected label. Box and whisker shows mean and standard deviation. Outliers
are indicated with ’+’. The number of each vertebra in the study is given in parenthesis below the
horizontal axis.

Figure 8: Examples of segmentation result

the mean of 0.76 with a standard deviation of 0.85. Separate results for each vertebra is reported in
Figure 7.

3.3 Labeling and segmentation of the entire vertebral column

Leave-one-out experiments were performed on CT images to assess the accuracy of labeling and
segmentation. Segmentation was performed on the entire vertebral column using the algorithm ex-
plained in the previous section. Examples of the segmentation are shown in Figure 8. Construction
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Table 1: Accuracy of the segmentation (in mm) for each vertebra.

T1 T2 T3 T4 T5 T6 T7 T8 T9
3.3±0.7 2.2±0.2 2.5±1.0 2.0±0.5 1.9±0.6 2.2±0.4 2.1±0.7 2.5±1.0 2.6±0.8

T10 T11 T12 L1 L2 L3 L4 L5 Average
1.7±0.4 2.0±0.5 2.7±0.8 1.9±0.5 1.5±0.4 1.8±0.6 2.2±0.9 2.8±0.8 2.1±0.7

of the probability matrix, P, between the detected vertebrae and finding the best labeling configura-
tion, results in 97% accuracy. In other words, the vertebral column in all the patients were correctly
labeled except one patient where the labeling was one level off. To assess the segmentation, the
distances from vertices of the manual and fitted model were computed. The mean of the distances
for each vertebra separately is detailed in Table 1.

4 Discussion and Conclusion

I proposed a novel technique for construction of a generic n-vertebrae model. This model enjoys
joint representation of n arbitrary consecutive vertebrae by embedding statistics derived from a train-
ing set which contain thoracic and lumbar vertebrae. I used such a representation for characterizing
an arbitrary vertebra in a CT image and for labeling. I showed that shape characteristics of three
consecutive vertebrae can be used robustly for vertebra identification. I also used the generic n-
vertebrae model to segment the entire vertebral column and used the result of the labeling of the
entire vertebral column to correct the computed labels.
The current unoptimized MATLAB code running on an Intel Xeon X5650 2.67 GHz, requires one
minute for segmentation of each vertebra. Given that, the segmentation of a CT with thoracic verte-
brae (12 vertebrae) takes around 12 minutes. This is approximately four times faster than previously
reported work [4]. The segmentation error is 2.1 mm which makes it suitable for a wide range of
image-guided spinal interventions.
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