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Abstract 

Traditional Compressive Sensing (CS) recovery techniques resorts a 
dictionary matrix to recover a signal. The success of recovery heavily relies 
on finding a dictionary matrix in which the signal representation is sparse. 
Achieving a sparse representation does not only depend on the dictionary 
matrix, but also depends on the data. It is a challenging issue to find an 
optimal dictionary to recover non-sparse data or to sparsify the data. Instead 
of finding the optimal dictionary matrix, this paper shows that Bayesian 
Learning recovery methods can achieve phenomenal results using general 
dictionary matrices for non-sparse signals. Our empirical results show that 
when Bayesian Learning is used to recover non-sparse signals it is not 
necessity to use an optimal dictionary matrix. Our experiments show that 
Bayesian Learning has superior performance compared to one of the state-
of-the-art optimization techniques used in CS, the SPGL1 algorithm. 
Bayesian Learning outperformed SPGL1 in terms of number of iterations, 
SNR, and recovery quality.   

 

1   Introduction  

 
In many sensory applications such as Tele-monitoring of physiological signals, exploration 

seismology…etc., data are fairly large relive to the limited processing resources. These 

factors are low space memory, low processing power and ultra-low power communication 

schemes. High compression rates of these data are highly required in such application. And 

being confronted with Nyquist’s sampling criterion in which exponential increase in volumes 

of data is an inevitable fact, then better compression /recover techniques is essential 

(Hermann, 2008). 

 

Current nonlinear data-compression techniques are based on non-linear sampling (e.g., 

sampling by a CCD chip in a digital camera) followed by a nonlinear encoding to encode a 

relatively small number of significant transformed domain coefficients (e.g. FFT coeffients 

of the data) (Mallat, 2009). Compression is accomplished by keeping only the largest 

coefficients. These compression methods are lossy and compression errors after 

decompression may occur at different levels of compression (Mallat, 2009). A compression 

ratio basically states the compressed signal size as a fraction of the size of the original 

signal. The better the transform domain of the data the more it captures the energy in the 

sampled data, which leads to larger attainable compression ratios. Although this technique is 

one of the very basic structures of the digital revolution of many consumer devices, 

including digital cameras, iPods, etc. (Hermann, 2008), it is still wasteful and not efficient in 

two important ways. First, high resolution data has to be collected during the sampling step, 

which is expensive. Second, the encoding phase is nonlinear this means tha t if we select a 

compression ratio that is too high (i.e. less samples for cheaper operations), the 

decompressed signal may result with unacceptable errors.  Sometimes in the worst case it is 

necessary to repeat collection of the high-resolution samples, which is infeasible and 



inefficient. This is not acceptable in cases when the storage of high-resolution data is a 

concern or where the cost of acquisition is the main obstruction. Compressed Sensing (CS) 

replaces the combination of high-resolution sampling and nonlinear compression in a single 

step by randomized subsampling technique that linearly combines encoding and sampling in 

a single step. Randomized subsampling has an advantage which is to encode the samples 

linearly and does not require high-resolution data. Also encoding in a randomized sampling 

manner suppresses subsampling artifacts (Hermann, 2010). These artifacts whether they are 

caused by missing traces of data or by cross talk between sources are turned into relatively 

harmless incoherent Gaussian noise by randomized subsampling (Herrmann and Hennenfent, 

2008).    

 

The idea of CS is to recover sparse signals, signals which contain few non-zero elements, 

from few linear measurements by using convex optimization. It concerns the recovery of a 

high-dimensional sparse vector after the compression of this vector. CS relies on specific 

properties of the compressive-sensing matrix and the to-be-recovered signal should be sparse 

(Hermann, 2010). Sparse representations of signals received lots of attentions in the recent years. 

The problem of solving a sparse representation from compression is to search for the most 

compact representation of a transformation atoms, in which these form a dictionary matrix. In 

some cases these atoms can be general enough such as Fourier Transform operators, Discrete 

Cosine Transform (DCT), or different types of Wavelet transform. Choosing the correct dictionary 

depends on the recovered / compressed signal. So To find a dictionary with enough code words of 

the data to be recovered is a requirement to solve the convex problem which is one of the major 

problems in CS. Another problem in CS is to find the sparse representation of a signal x in a given 

dictionary D. 

 

In general the CS is formulated as follows: Given an M × N, A matrix in equation 1 which is 

called the sensing matrix, where N > M and usually M << N. The compression rate is controlled 

by the variable M. For example if 50 % compression is required to the sparse data x then M 

is equal to N/2. Y is the compressed signal Y∈  , the problem of sparse representation is to find 

the N × 1 coefficient of sparse vector x from the compressed Y matrix using the A matrix and the 

dictionary matrix D.  

 

Y =  A x +  v      (1) 

 

Where v is a Gaussian noise associated in the process. Current CS algorithms use the 

compressed data Y, and the sensing matrix A to recover the original signal x. Their successes 

rely on the key assumption that most entries of the signal x are zero (i.e. x is sparse). If the 

data is not sparse by its nature then sparsifying the data is essential using a dictionary matrix 

D. One can seek a dictionary matrixD ∈   𝑋 , and x can be expressed as x = Dz and z is 

sparse, where𝑧 = 𝐷−1𝑥. Then, the model in equation 1 can be re-written as   

 

Y = ADz+ v     (2) 

 

In such cases when x is not sparse as expressed in equation 2 the CS algorithms first 

recovers z using y and AD, and then recover the original signal x is recovered by solving x = 

Dz. It is very hard to find a D matrix that satisfies the sparisity of the data and when D is not 

valid then the recovery is not poor. The term sparse recovery is associated with CS in which 

sparisity is required for convex optimization to recover only sparse data.   

 

The basic problem in CS or sparse signal recovery is to recover a sparse signal 𝑥~ from a 

small number of linear measurements Y. There are lots of algorithms to solve this problem 

highlighted in equation 3 and it is believed that sparsity is essential to solve the compressed 

sensing problem.  

 

𝑥~ = arg𝑚𝑖𝑛 ||𝑥|| 1   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑌 = 𝐴𝑥         (3) 

 



In this expression, 𝑥~ represents the estimated values of the L1 norm of x, and minimizing 

the L1 norm in equation 3 promotes sparsity in x and the equality constraint ensures that the 

solution respects the acquired data.  In cases x is not a sparse representation then finding the 

optimum dictionary is a current challenging research topic (Hermann, 2008; Hermann 2010).  

 

Many other conventional data compression methodologies such as wavelet compression 

cannot satisfy the required compression constraints mentioned above (low power operation, 

low processing speeds and power, cheap hardware, and low power communication schemes) . 

It has been shown that compared to wavelet compression and Compressed Sensing (CS), 

when using sparse binary matrices as the sensing matrices (A matrix), can reduce energy 

consumption while achieving competitive data compression ratio. The use of sparse 

Binary matrices means the device cost largely reduce (Zhang 2011). However, current CS 

algorithms only work well for sparse signals or signals with sparse representation. Instead of 

seeking an optimal dictionary matrix for specific data and by using only a general dictionary 

method, this paper exploits the performance of Bayesian learning in compressed sensing 

recovery by implementing software that applies Block Sparse Bayesian Learning Algorithm 

presented by (Zhang in 2013). Our result shows that the Bayesian Learning method can 

recover the compressed sensing non-sparse signals. This paper shows a performance 

comparison between the Bayesian Learning Algorithm and one of the best state of the art CS 

algorithms that solves equation 3 called the SPGL1. Since Electroencephalography (EEG), 

Physiological brain signals, is neither sparse in the original time domain nor sparse in 

transformed domains we used it for our testing. Current CS algorithms cannot achieve good 

recovery quality for EEG signals. And at the best of our knowledge we have achieved the 

best recovery quality as showed in the results section. Our empirical results suggest that 

when using Bayesian Learning for EEG compression/recovery, the seeking of optimal 

dictionary matrices is not a crucial issue when using Bayesian Learning.  

 

Section 2 explains the adopted Bayesian Learning Algorithm method that we have 

implemented which was published by Zhang 2013. Section 3 explains the experiments we 

carried out to show the performance of the recovery of Bayesian Learning algorithm with 

non-sparse EEG signals. The results section shows a performance comparison between 

SPGL1 and Bayesian Learning. Section 4, and 5 presents a discussion about practices of CS 

recovery methods and finally the conclusion and the references are presented.  

 

2 Sparse Bayesian Learning  

The Bayesian Learning Algorithm was initially proposed to recover a signal with a block 
structure by dividing it into non-overlapping blocks. It was proved that even if a signal has 
no specific block structure, the algorithm is still effective. This is important because most 
non-sparse signals don’t have a distinctive block structure such as EEG signals. EEG signals 
have arbitrary waveforms and their z representation coefficients have no block structure. 
Therefore Bayesian Learning Algorithm can apply the CS recovery.  

The input x is a divided into a set of concatenation of g non-overlapping blocks. The size of 
the block can be arbitrarily defined since this algorithm can work with non-distinctive block 
structure.    

𝑥 = 0𝑥1, … , 𝑥𝑑1 , … , 𝑥𝑑𝑔−1 + 1,… , 𝑥𝑑𝑔1
𝑇

, where [𝑥1, … , 𝑥𝑑1] = 𝑥1
𝑇 …0𝑥𝑑𝑔−1 + 1,… , 𝑥𝑑𝑔1 = 𝑥𝑔

𝑇, 

Some of these blocks are non-zero blocks and we will call it k blocks, where𝑘 ≪  𝑔. The 
location of the k blocks is unknown and arbitrary and by exploiting these blocks partitions 
the recovery performance is improved (Zang, 2012). The assumption is that each block 
𝑥𝑖  ∈   

𝑑𝑖×1 satisfy a parameterized multivariate Gaussian distribution with unknown 
parameters 𝛾𝑖 and 𝐁𝑖: 

   𝑝(xi; 𝛾𝑖 , 𝐁𝑖)~𝑁(0, 𝛾𝑖𝐁𝑖), 𝑖 = 1,… , 𝑔   (4) 

where, 𝛾𝑖 is a nonnegative parameter that controls the block-sparsity of x. When 𝛾𝑖 = 0, the 

𝑖𝑡ℎ block = 0. During the learning process 𝛾𝑖 → 0 to prompt and encourage the idea of 



sparsity at the block level.  

The other parameter, 𝐁𝑖 ∈   
𝑑𝑖×𝑑𝑖  , is a positive definite matrix that captures the inter-

correlation structure of the 𝑖𝑡ℎ block. Inter-correlation is the correlation among the elements 
within the block. The Inter-Correlation is useful because it indicates a predictive relationship 
that can be exploited.  

Assuming that the blocks are mutually uncorrelated to each other, the prior of x is 
𝑝(x; *𝛾𝑖 , 𝐁𝑖+𝑖) ~𝑁(0, 𝛴0), where Σ0 = diag*𝛾1𝐁1, … , 𝛾𝑔𝐁𝑔+. Also assume that the noise vector 

is Gaussian distributed𝑝(𝐯;  𝜆) ∼ 𝑁(0, 𝜆𝐈), and 𝜆 is a positive scalar. The posterior of x can be 

given by 𝑝(𝐱|𝐲;λ, *𝛾𝑖 , 𝐁𝑖+𝑖−1
𝑔
) = 𝑁(𝜇𝑥, 𝛴𝑥) and  𝜇𝑥 = Σ0𝐀

T(λ𝐈 + 𝐀Σ0𝚽
T)−1𝐲 andΣx =

.Σ0
−1 +

1

λ
𝐀T𝐀/

−1

. Once the learning parameters λ and *𝛾𝑖 , 𝐁𝑖+𝑖−1
𝑔

 are learned and estimated, 

x̂, the Maximum-A-Posteriori estimate of x, is directly obtained from the mean of the 
posterior. The learning parameters are estimated by type II maximum likelihood procedure, 
whereas the goal is to minimize the following cost function to get the parameters.  

  𝐿(𝜃) = log | 𝜆𝐈 + 𝐀Σ0𝐀
T| + 𝐲T(𝜆𝐈 + 𝐀Σ0𝑨

T)−1𝐲,    (5) 

where 𝜃 denotes all the learning parameters λ, *𝛾𝑖, 𝐁𝑖+𝑖−1
𝑔

.  

This algorithm discussed the derived from of the learning rules 𝛾𝑖, 𝐁𝑖, and λ. Different 𝛾𝑖 
learning rules help determine the best possible recovery performance when optimal values of 

λ and 𝐁𝑖 are given, and lead to convergence. Although 𝛾𝑖 learning rule could sometimes 

lead to perfect recovery, the performance can be very poor if values of λ cannot be 

obtained.  

In noiseless environments, the parameter 𝐁𝑖(∀𝑖) affects local convergence by affecting the 
shape of basins of the attraction to local minima basin. So the global minimum of the cost 
function will always lead to the true sparse solution regardless the values of 𝐁𝑖. For this 
reason𝐁𝑖   will be constrained to achieve better performance by avoiding over-fitting. 

The λ rule is based on the bound-optimization method, which is also known as the 
Majorization-Minimization method, in which it maintains good performance. The learning 

rules for λ and 𝐁𝑖 are as follows: 

   λ ←
||(y− 𝐀𝜇𝑥)||2

2
+∑ Tr(Σ𝑥

𝑖 (𝐀i)
T
𝐀i)

g
i=1

M
 ,    (6) 

The idea is to find a positive definite and symmetric matrix B so that it is only determined by 
one parameter. For many applications modeling elements of a block as a first-order Auto-
Regressive (AR) process is a sufficient model for intra-block correlation. For this case the 
Toeplitz matrix was chosen to form this correlation and given as follows:  

 Bi = Toeplitz(,1, �̅�, … �̅�
𝑑𝑖−1-) = [

1 �̅�    ⋯ �̅�𝑑𝑖−1

⋮ ⋱ ⋮
�̅�𝑑𝑖−1 �̅�𝑑𝑖−2  ⋯ 1

] ∀𝑖  (7) 

where Σ𝑥
𝑖  ∈  𝑑𝑖𝑥𝑑𝑖  is the 𝑖𝑡ℎ diagonal block in Σx, 𝐀

i  ∈   𝑥𝑑𝑖  is the sub-matrix of 𝐀 which 

corresponds to the 𝑖𝑡ℎ block of x, �̅� =
𝑚1̅̅ ̅̅ ̅

𝑚0̅̅ ̅̅ ̅
, �̅�0,1 = ∑ 𝑚0,1

𝑖𝑔
𝑖=1 , where 𝑚0 & 𝑚1 are the average 

of the elements of the main diagonal and sub-diagonal respectively of the following matrix: 

1

𝑔
∑

Σ𝑥
𝑖 +𝜇𝑥

𝑖 (𝜇𝑥
𝑖 )
𝑇

𝛾𝑖

𝑔
𝑖=1    

In equation 5 notice the first term and the second term. We can notice that the first term on 

the left of the plus operator is concave when 𝛾 ≥  0, where  𝛾 =  [𝛾1, … , 𝛾𝑔]
𝑇
 and the second 

term is convex also when γ ≥  0.   

To minimize the cost function it is required to find an upper-bound for the first term and then 
minimize the upper-bound. This is done by using the supporting hyper-plane of the first term 
as its upper-bound, we let γ∗ be a given point in the γ –space given in the next equation.  



log|λ𝐈 + 𝐀𝛴0𝐀
T| ≤∑Tr((𝛴𝑦

∗)
−1
𝐀i𝐁𝑖(𝐀

i)T)

g

i=1

𝛾𝑖 + log|𝛴𝑦
∗ | −∑Tr((𝛴𝑦

∗)
−1
𝐀i𝐁𝑖(𝐀

i)T)

g

i=1

𝛾𝑖
∗   

Where, 𝛴𝑦
∗ =  λ𝐈 + 𝐀𝛴0

∗𝐀T and 𝛴0
∗ = 𝛴0| 𝛾=𝛾∗. Substituting this into equation (5), we get 

𝐿(𝛾) ≤∑Tr .(𝛴𝑦
∗)
−1
𝐀i𝐁𝑖(𝐀

i)T/

g

i=1

𝛾𝑖 + 𝐲
T(λ𝐈 + 𝐀𝛴0𝐀𝚽

T)−1𝐲 + log|𝛴𝑦
∗|

−∑Tr .(Σy
∗)
−1
𝑨i𝐁𝑖(𝐀

i)T/

g

i=1

𝛾𝑖
∗ = �̃�(𝛾)                                                           (8) 

which is convex over γ. When γ = γ∗, then 𝐿(𝛾∗) = �̃�(𝛾∗). Further, for any γmin which 
minimizes �̃�(𝛾), we have the following relationship: 𝐿(γmin)  ≤ �̃�(γmin) ≤  �̃�(𝛾

∗) = 𝐿(𝛾∗). 
This shows that when we minimize the surrogate function �̃�(𝛾) over 𝛾, the resulting 
minimum point decreases the 𝐿(𝛾) in equation 3 efficiently.  

By applying 𝐲T(λ𝐈 + 𝐀Σ0𝐀
T)−1𝐲 = 𝐦𝐢𝐧𝐱,

1

λ
||𝐲 − 𝐀𝐱 ||2

2 + 𝐱TΣ0
−1𝐱-, then defining a new 

upper bound for �̃�(𝛾), 𝐺(𝛾, 𝐱) that is convex in both γ and x, the solution (𝛾𝑜) of �̃�(𝛾) is the 
solution (𝛾𝑜, 𝐱o) of 𝐺(𝛾, 𝐱). Whereas 𝐺(𝛾, 𝐱) is the final surrogate cost function. 

Taking the derivative of 𝐺(𝛾, 𝐱) with respect to 𝛾𝑖, we get 

𝛾𝑖 ← √
𝐱i
T𝐁i
−1𝐱i

𝑇𝑟.(𝐀i)
T
(Σy
∗ )
−1
𝑨i𝐁i/

     (9) 

The next section shows the results of the implementation of the learning rule in the 

prediction model 𝜇𝑥 = Σ0𝐀
T(λ𝐈 + 𝐀Σ0𝚽

T)−1𝐲 

3 Results  

Firstly, the first experiment shows the results of the comparison between the two algorithms 
in terms of number of iterations, and SNR. It introduces two more measures used to measure 
the recovery of the signal. The second experiment shows the performance of both algorithms 
in noisy environments so that it ranges from 5 to 25 dB. The third experiment shows the 
performance of Bayesian Learning for 2D data. At the best of our knowledge these recovery 
results are the best results ever achieved on EEG Signals using compressed sensing 
techniques. Both algorithms were tested using the same data which were acquired from the 
dataset 1 of the Berlin BCI group (Blankertz, 2007).    

3.1 Experiment 1: Comparison of CS using DFT, DWT, Wavelets D matrix 

Bayesian Learning is compared with one of the state of the art recovery algo rithms SPGL1 
in terms of recovery quality. Both methods algorithms adopted the same sensing matrix A. 
Thus, they have equal power consumption so the comparison of energy consumption is 
excluded. Three performance indexes were used to measure recovery quali ty. One was the 

Normalized Mean Square Error (NMSE), defined by 
||𝑥−𝑥~||2

2

||𝑥||2
2  , where x is the original signal 

and 𝑥~is the recovered signal. The second method is the Structural SIMilarity index (SSIM) 
introduced by (Zhang 2009) for 1-dimensional signals (the length of the sliding window used 
was 100). SSIM is a method to measure the similarity between the recovered signal and the 
original signal. The higher the SSIM the better the recovery quality and when the recovered 
signal is the same as the original signal the SSIM = 1. The results of the comparison are 
tabulated in table 1. These tests show the condition of matrix D of (size N-by-N) different 
types of non-sparse dictionary matrices as shown in table 1. Thus 𝑥 = 𝐷−1𝑧  whereas z is 
recovered by both algorithm. The number of samples of the original signal N was equal to 
20480 samples. The compression rate M = N/2 (50% compression). The sensing matrix A is 
a binary matrix of size M-by-N, in which every column contained 2 entries of ones located at 
random locations, while the rest of the entries are zeros. For the Bayesian Learning 
Algorithm the block partition is set to be 24 blocks which is chosen randomly.  The 



maximum number of iterations for the Bayesian Learning was set to 7 as for the SPGL1 was 
set to 350 iterations insuring the best performance of both algorithms. Both algorithms 
almost consumed the same time of 20.1 seconds to execute on a 2GHz Core duo processor 
and 2GB DDR2 RAM.   

Table1: Comparison of Bayesian Learning with SPGL 

Bayesian Learning 
Results  

SNR NMSE SSIM SPGL1 Results SNR NMSE SSIM 

1D DCT 28.3 0.08 0.82 1D DCT 20.2 0.18 0.60 

1D  Wavelet Haar 25.9 0.14 0.75 1DWavelet_Haar 21.8 0.24 0.63 

1D_Wavelet db8 24.6 0.10 0.80 1D_Wavelet db8 22.4 0.20 0.67 

1D_Wavelet db10 25.3 0.09 0.80 1D_Wavelet db10 20.4 0.19 0.68 

1D_Wavelet db14 25.1 0.09 0.80 1D_Wavelet db14 21.6 0.19 0.67 

1D_Wavelet db16 25.0 0.09 0.81 1D_Wavelet db16 21.9 0.20 0.67 

1D_Wavelet db20 24.8 0.09 0.80 1D_Wavelet db20 23.4 0.19 0.67 

As shown in the above table the Bayesian learning outperforms the SPGL1 algorithm in 
SNR, NSME, and SSIM with a significant less number of iterations using a general 
dictionary matrix. Figure 1 shows a segment of the original EEG signal and the 
reconstructed data using Bayesian Algorithm and SPGL1. The original data was compressed 
at 50% compression rate and it is clearly shown that the reconstruction of SPGL1 is noisy 
and the quality is poor. On the other hand Bayesian Learning algorithm achieved good 
reconstruction. As shown in this figure the transform coefficients of the data are not sparse 
and Bayesian Learning algorithm still reconstructed the EEG. This figure illustrates that 
Bayesian Learning technique does not need a sparsifying Dictionary matrix D to reconstruct 
the compressed signal.         

 

Figure 1: (a) EEG data segment & its DCT Coefficients. As shown in the figure the DCT 
coefficients are non-sparse, (b) Recovery using Bayesian Algorithm & SPGL1 

3.2 Experiment 2: Comparison of CS with SPGL1 in noisy environment.  

In this experiment we compared the Bayesian Learning algorithm with the SPGL1 at 
different noise levels. In this experiment the sensing matrix is the same as used in 
experiment 1, M = 128 and N = 256. The same Gaussian white noise is added for both 
algorithms so that the SNR, defined by SNR (dB), 20 log (||Ax||/ ||v||), ranging the signal 
from 5 dB to 25dB for the generated signal. The results are shown in Fig 2 the Bayesian 
Learning algorithm exhibited significant performance over SPGL1.  

As shown in the figure the Normalized mean square error of the reconstructed signal decays 
faster in the Bayesian Learning case than that of the SPGL1. At all noise cases the Bayesian 
Learning shows less error than the SPGL1 which makes the Bayesian learning method more 



tolerant to noise than the SPGL1.  

 

Figure2: Noise tolerance test between Bayesian Learning and SPGL1 

3.3 Experiment 3: Results of multiple Channel Recovery 2D EEG data.  

In this experiment 5 channels of EEG signals was compressed and reconstructed in only 7 
iterations using Bayesian Learning.  

    

Figure3: Multiple channels Reconstruction using Bayesian Learning of Average 32 dB SNR    

The above figure shows the original signal and the reconstructed data of the compression 
associated with its SNR. The Original data is 2560 samples per channel sampled at 1000Hz. 
The reconstruction time taken for reconstructing these 5 channels is 9.95 seconds in 7 
iterations which was executed on the same machine mentioned in experiment one. On the 
other hand the total time taken to reconstruct each channel separately is on average 12.25 
seconds. In this experiment the sensing matrix is the same in experiment one, compression 
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rate is 50 %, and the dictionary matrix is a DCT matrix. At the best of our knowledge  figure 
3 illustrates the best CS reconstruction results was ever illustrated to EEG signals. The result 
of average NMSE and SSIM are 0.0007 and 0.9876 respectively and these results are the 
best results ever published so far.      

 

4 Discussion:  

CS resorts to a dictionary matrix for non-sparse signal recovery. But the success of this 
approach relies on the sparsity of its coefficients and the dictionary matrix. To find a 
dictionary matrix in which a signal can be sparse is an important issue and it is a more 
complex problem when the signal is non-sparse by its nature neither in its transform. We 
proved that using various popular general dictionary matrices, the transform representation 
of such a non-sparse signal like EEG signals are still not sparse. We showed that one of the 
state of the art CS algorithms SPGL1 has poor performance and their recovery quality is not 
suitable. Instead of seeking optimal dictionary matrices, this study proves a method using 
general dictionary matrices but achieves good recovery quality for non-sparse signals. The 
empirical results show that when using the Bayesian learning for non-sparse signals for 
compression/recovery the seeking of optimal dictionary matrices is not very crucial issue. 
We suggest a research direction to improve the proposed Bayesian learning algorithm to 
achieve better performance in terms of learning speed.     

 

5 Conclusion:  
In applications of which large data volumes is acquired and given hardware, memory and 

processing power limitations, high compression rates without trading off quality is an important 

matter. Compressed Sensing solves this problem, but the problem is extremely difficult in current 

algorithms for non-sparse signals in the time domain and in the transformed domains. To improve 

the problem, this study shows that the use of block sparse Bayesian learning has superior 

performance to other existing state of the art CS algorithms in recovering non-sparse signals. 

Experimental results show that it recovered EEG signals with good quality. It is suggested to 

improve this algorithm by applying Bayesian optimization techniques to improve speed.      
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