
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Bayesian Optimization without Acquisition Functions

Anonymous Author(s)
Affiliation
Address
email

Abstract

Bayesian optimization (BO) is a powerful global optimization technique which is
highly efficient when it comes to the optimization of expensive black box func-
tions. It usually requires, however, an auxiliary global optimizer in each iteration
to optimize an acquisition function. It is customary in the BO literature to use
DIvided RECTangles (DIRECT) to accomplish such a task. Despite the effective-
ness of DIRECT, this approach suffers from two shortcomings. Firstly, it is often
hard to know whether DIRECT could indeed find the maximum of the acquisition
function. As theoretical guarantees of BO algorithms often relies on finding the
exact optimum of the acquisition function, failure to do so could possibly lead to
failure in finding the true global optimum. Secondly, the use of DIRECT can be
costly as it has to be run in each iteration of BO algorithms. In this report, we
introduce a new technique for efficient global optimization which we call SOO-
UCB. By combining BO with a different global optimization scheme, we are able
to perform BO without the need to optimize acquisition functions. We demon-
strate in our experiments that SOO-UCB not only outperforms GP-UCB but also
does so in with less computation. We also discuss some theoretical properties of
the proposed algorithm.

1 Introduction

Bayesian optimization (BO) [2, 10, 13, 9, 12] is a powerful global optimization technique. It is used
to find a good approximation of the global optimum of a function f : X → R. BO is most suitable
in the case where the objective function can only be evaluated point-wise and each evaluation is
expensive. The success of BO rests on two powerful techniques. First, BO assume a function prior
which encapsulate our belief about the objective function. The prior afford us a posterior distribution
of functions which gives very rich information about the objective function. In the BO literature,
a Gaussian Process (GP) prior is commonly assumed. Second, BO uses an acquisition function to
trade off exploration and exploitation when it decide which point to sample next. Many variants of
acquisition functions exist. Among the most commonly used are GP Upper Confidence Bound (GP-
UCB) and Expected Improvement (EI). Given certain regularity conditions, rate of convergence has
been shown for both EI and GP-UCB. BO has been successfully applied to a variety of problems in-
cluding robot gait planning [14], sensor placement [20], adaptive MCMC [15], and hyper-parameter
optimization [19, 1]. We refer the curious readers to a tutorial treatment on the subject [2].

Despite its efficiency, BO usually requires an auxiliary global optimizer in each iteration to op-
timize the acquisition function. It is customary in the BO literature to use DIvided RECTangles
(DIRECT) [8, 2] to accomplish such a task. Other global optimization algorithms like CMA-ES
could also be applied [6]. Despite the effectiveness of DIRECT, this approach suffers from two
shortcomings. Firstly, it is often hard to know whether DIRECT could indeed find the maximum
of the acquisition function. As theoretical guarantees of BO algorithms often relies on finding the
exact optimum, failure to do so could possibly lead to failure in finding the true global optimum.
Secondly, the use of DIRECT can be unnecessarily costly as it has to be run in each iteration of BO

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

algorithms. This is exacerbated by the fact that for any two consecutive iterations, the acquisition
function may not change drastically which questions the necessity of re-optimization in each itera-
tion. As a general global optimization scheme, DIRECT without modifications would not allow the
possibility of sharing information across iterations as it is oblivious to the possible change of the
underlying acquisition function. Other standard off the shelf global optimization schemes that we
may employ would most likely suffer from the same problems, as these methods like DIRECT are
also general global optimization schemes.

Apart from BO, there also exist a different class of methods for doing global optimization [11, 3, 17].
Instead of deriving posterior distribution, this class of methods build space partitioning trees. Like
in the case of the acquisition function, these algorithms expands the leaves of the tree that is of high
function value or of high variance. Out of these methods, a method named Simultaneous Optimistic
Optimization (SOO) [17] is worth mentioning as it is able to optimize an objective function globally
without the knowledge of its smoothness. We will describe this method in more detail in Section 2.
It is interesting to note that these methods do not require the optimization of acquisition functions.
However, due to the lack of a posterior that interpolates between the sampled points, it is possible
this class of method may not be as competitive as BO when it comes to functions that do satisfy the
prior assumption of BO. Such claims have to yet to be backed up by empirical comparisons.

To amend the aforementioned shortcomings of using a global optimizer within BO, we propose in
this paper a different approach to do BO by abandoning the practice of optimizing the acquisition
function in each iteration. Instead, we use SOO to optimize the underlying objective function di-
rectly while disallowing it to sample points that are deemed unfit by the GP posterior by following
the approach detailed in [5]. We call this algorithm SOO-UCB. As demonstrated by our experi-
ments, the proposed algorithm preserves the ability of traditional BO on using a minimum number
of sample points to optimize and at the same time avoids the shortcomings of optimizing acquisition
functions in each iteration.

The report is organized in the following fashion. In section 2, we discuss the relevant works and
introduce the algorithm. We discuss the theoretical properties of the algorithm in this section. In
section 3, we demonstrate the effectiveness of our approach by comparing it to GP-UCB and SOO.
Finally, we conclude the report with potential future works.

2 SOO-UCB

In this section, we describe the relevant works and introduce the new algorithm SOO-UCB. We also
briefly discuss the theoretical properties of the proposed algorithm.

2.1 GP-UCB

As mentioned in the introduction, Bayesian optimization has two ingredients that need to be spec-
ified: The prior and the acquisition function. In this work, we adopt GP priors. We review GPs
very briefly and refer the interested reader to [18]. A GP is a distribution over functions specified
by its mean function m(·) and covariance k(·, ·). More specifically, given a set of points x1:t, with
xi ⊆ RD, we have

f(x1:t) ∼ N (m(x1:t),K(x1:t,x1:t)),

where K(x1:t,x1:t)i,j = k(xi,xj) serves as the covariance matrix. A common choice of k is

the squared exponential function which is defined as kdl (y
(1),y(2)) = exp

(
−‖y

(1)−y(2)‖2
2l2

)
which

length scale parameter l > 0. Many other choices are possible depending on our degree of belief
about the smoothness of the objective function. Note that k(x, y) = 1 when x = y and as ‖x− y‖2
increases k(x, y) decreases. This means that two points that are close by have a bigger covariance
and points that are far away from each other have smaller covariance.

An advantage of using GPs lies in their analytical tractability. In particular, given observations x1:n

with corresponding values f1:t, where fi = f(xi), and a new point x∗, the joint distribution is given
by: [

f1:t
f∗

]
∼ N

(
m(x1:t),

[
K(x1:t,x1:t) k(x1:t,x

∗)
k(x∗,x1:t) k(x∗,x∗)

])
.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

For simplicity, we assume that m(x1:t) = 0. Using the Sherman-Morrison-Woodbury formula, one
can easily arrive at the posterior predictive distribution:

f∗|Dt,x
∗ ∼ N (µ(x∗|Dt), σ(x

∗|Dt)),

with data Dt = {x1:t, f1:t}, mean µ(x∗|Dt) = k(x∗,x1:t)K(x1:t,x1:t)
−1f1:t and variance

σ(x∗|Dt) = k(x∗,x∗) − k(x∗,x1:t)K(x1:t,x1:t)
−1k(x1:t,x

∗). That is, we can compute the pos-
terior predictive mean µ(·) and variance σ(·) exactly for any point x∗.

At each iteration of Bayesian optimization, one has to re-compute the predictive mean and variance.
These two quantities are used to construct the second ingredient of Bayesian optimization: The
acquisition function. In this work, we report results for the GP-UCB acquisition function u(x|Dt) =
ucb(x|Dt) = µ(x|Dt)+βtσ(x|Dt) [20, 5]. We define lcb(x|Dt) = µ(x|Dt)−βtσ(x|Dt). In above
definitions, βt =

√
2 log(td/2+2π2/3δ) where d is the dimensionality of the objective and δ is the

probability with which f(x) is bounded above and below by ucb(x|Dt) and lcb(x|Dt) respectively.
The next query is: xt+1 = argmaxx∈X u(x|Dt). Note that this utility favors the selection of points
with high variance (points in regions not well explored) and points with high mean value (points
worth exploiting). the optimization of the closed-form acquisition function is often carried out by
off-the-shelf global optimization procedures like DIRECT. Other acquisition functions like Expected
Improvement (EI) exist [16, 21, 4] and often yield similar results. Some researchers have also used
a portfolio of acquisition functions to obtain better results [7]. We do not consider these acquisition
function for brevity. The Bayesian optimization procedure is shown in Algorithm 1.

Algorithm 1 GP-UCB
1: for t = 1, 2, . . . do
2: Find xt+1 ∈ RD by optimizing the acquisition function u: xt+1 = argmaxx∈X u(x|Dt).
3: Augment the data Dt+1 = {Dt, (xt+1, f(xt+1))}
4: end for

Finite sample bound of the GP-UCB algorithm exist [20]. But the bounds depend on the ability in
each iteration to optimize the acquisition function exactly. Since the optimization of the acquisition
function in each iteration is often achieved through a global optimization scheme with a fixed budget,
we may not be able to guarantee that we can find the exact optimum. The procedure is also very
inefficient. As across the iterations, the landscape of the acquisition function may not change very
much but we still have to restart the optimizer in each iteration which may be unnecessarily costly.

2.2 The Shrinkage of Feasible Regions

In [5], de Freitas et al. introduced another scheme to trade off exploration and exploitation. Instead
of optimizing the acquisition function in each iteration, the authors proposed to sample, on the T th

iteration, the objective function on a finite lattice within a feasible regionRT . The authors were able
to show that if we double the density in each iteration, the feasible region which is defined to be

RT = {x : µT (x) + βTσT (x) > sup
x∈RT−1

µT (x)− βTσT (x)}

shrinks very fast. Notice, with high probability, the optimizer lies within RT . Thus as the feasible
region shrinks, the algorithm locates the optimizer of the objective function.

With this approach, the authors did not resort to optimization of the objective function. However,
even in moderate dimensions, the algorithm becomes impractical since a lattice often becomes too
large to be sampled in a reasonable amount of time. To overcome this problem, an optimistic strategy
may have to be employed to sample the promising regions first in order to avoid the computational
cost associated with covering the space. In the next subsection, we introduce such an optimistic
strategy.

2.3 SOO

SOO is another way of doing global optimization. Instead of assuming that the target function is
a sample of the with GP prior, it assumes a symmetric semi-metric `. such that f(x∗) − f(x) ≤

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

`(x, x∗). To optimize the objective function SOO partitions the space X hierarchically by building
a tree. Let us assume that each node of the tree has k children. A node at level h of the tree would
be denoted as (h, j) and its children {(h + 1, kj + i)}0≤i<k. The children partitions their parent’s
cell Xh,j with the cell of the root node being the whole space X . A node is always evaluated at the
center of the cell which we denote as xh,j . SOO at each round expands (evaluates all its children)
at most one leaf per depth, and a leaf is expanded only if it has the largest value among all leaves of
same or lower depths. The SOO algorithm takes as parameter a function t→ hmax(t) which limits
the maximum height of the tree after t node expansions. The full SOO algorithm is summarized in
Algorithm 2.

Algorithm 2 SOO
1: Evaluate f(x0,0).
2: Initialize T1 = {0, 0} (root node).
3: Set t = 1.
4: for t = 1, 2, . . . do
5: Set νmax = −∞.
6: for h = 0 : min{depth(Tt), hmax(t)} do
7: Set (h, j) = argmaxj∈{j|(h,j)∈Tt} f(xh,j)

8: if f(xh,j) > νmax then
9: Evaluate the children {(h+ 1, kj + i)}0≤i<k of (h, j)

10: Add the children of (h, j) to Tt
11: Set νmax = f(xh,j).
12: Set t = t+ 1;
13: end if
14: end for
15: end for

SOO is optimistic in the sense that it only expands cells that has the best objective values at their
level and the levels below it. In this sense it exploits. Also it is easy to see that given enough
iterations, every cell will be eventually expanded. Thus SOO will sample points arbitrarily close to
the optimizer. It is somewhat astonishing that a finite sample performance bound also exist for SOO
without assuming knowledge of the semi-metric `.

2.4 SOO-UCB

SOO offers a different way of trading off exploration and exploration which does not require the
optimization of an acquisition function. However, because of the simplicity of the assumptions of
SOO, it does not utilize the available information given by the evaluated points as effectively. To
improve upon SOO, we consider an additional assumption that objective function is a sample from
the GP prior as in the case of GP-UCB. Instead of optimizing UCB, we use SOO to propose points
to sample and reject the proposal if the UCB of the proposed point is less than the function value of
the best point already sampled. We call this algorithm SOO-UCB as it takes advantage of both SOO
and the bounds provided by UCB. The algorithm in effect is a combination of the two algorithms
described in the previous two sections. It improves upon SOO by using the information available
more efficiently and by using an optimistic proposal it avoids the need to sample exhaustively before
shrinking the feasible region. The full algorithm is summarized in Algorithm 3.

2.5 Theoretical Considerations

We believe that finite sample performance bounds could be derived for the newly introduced al-
gorithm SOO-UCB. Because of the restriction of time, however, we have not been able to derive
such finite sample bounds. But we note that SOO-UCB is indeed consistent. That is asymptoti-
cally SOO-UCB will sample points whose objective value is arbitrarily close to the optimum. Since
we use SOO to propose points to sample, we can argue that a leaf that contains the optimizer will
eventually be expanded after finite time. Also if a proposed point is such that its value is greater
than or equal to the incumbent, it will be sampled with high probability. This is because with high
probability, the UCB of this point would be greater than or equal to its true function value which is
no less than the value of the incumbent. Thus as the leaves that contains the optimizer are expanded,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Algorithm 3 SOO-UCB
1: Set g0,0 = f(x0,0).
2: Set f+ = g0,0.
3: Initialize T1 = {0, 0} (root node).
4: Set t = 1, n = 1.
5: Set D1 = {(x0,0, g(x0,0)}
6: while true do
7: Set νmax = −∞.
8: for h = 0 to min{depth(Tt), hmax(t)} do
9: Set (h, j) = argmaxj∈{j|(h,j)∈Tt} g(xh,j)

10: if g(xh,j) > νmax then
11: for i = 0 to k − 1 do {// loop over all Children of node (h, j)}
12: if ucb(xh+1,kj+i|Dn) ≥ f+ then {// To sample the objective function or not.}
13: Set g(xh+1,kj+i) = f(xh+1,kj+i)
14: Set n = n+ 1.
15: Augment the data Dn = {Dn−1, (xh+1,kj+i, g(xh+1,kj+i)}
16: else {// Do not sample the objective function, estimate it by µ(·|Dn).}
17: Set g(xh+1,kj+i) = µ(xh+1,kj+i|Dn)
18: end if
19: if g(xh+1,kj+i) > f+ then
20: Set f+ = g(xh+1,kj+i)
21: end if
22: end for
23: Add the children of (h, j) to Tt
24: Set νmax = g(xh,j).
25: Set t = t+ 1;
26: end if
27: end for
28: end while

the children of these expanded leaves that has a greater objective value than the incumbent will be
sampled. If the objective function is continuous (which is true with probability 1 a sample of the GP
given many popular kernels [5]), we can have the consistency result.

3 Experiments

In this section, we validate the proposed algorithm with a series of experiments comparing the
three algorithms (GP-UCB, SOO, SOO-UCB) on global optimization benchmarks. We omitted the
feasible region shrinking algorithm (described in Section 2.2) as it is not practical for problems
of even moderate dimensions. In our experiments, for each test function we used the same hyper-
parameters for GP-UCB and SOO-UCB. We randomized the first sample point for SOO-UCB so that
it is not deterministic. To optimize the acquisition function for GP-UCB, we used a combination of
DIRECT which is followed by a local optimization method using gradients.

We use in total 5 test functions: Branin, Rosenbrock, Hartmann3, Hartmann6, and Shekel. All the
test functions are common to the global optimization literature. Except for the Rosenbrock function,
the test functions are multi-modal. 1 We used as out evaluation metric the log distance to the true
optimum which is defined as log10(f

∗ − f+) where f+ is the best objective value sampled so far
and f∗ is the maximum value of the objective. For each test function, we repeat our experiments 50
times for GP-UCB and SOO-UCB and run SOO once as SOO is a deterministic strategy. We plot
the mean and a confidence bound of one standard deviation of our metric across all the runs for all
the tests. The plots are presented in Figure 1 and Figure 2.

1We refer to the reader the following website for details and formulas which are omitted
for space reasons: http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/
Hedar_files/TestGO_files/Page364.htm.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Figure 1: Comparison of GP-UCB, SOO, and SOO-UCB on multi-modal test functions of low
dimensionality. In this set of experiments, GP-UCB and SOO-UCB performs similarly whereas
SOO does poorly. The poor performance of SOO is caused by having weaker assumptions on the
smoothness of the objective function. The good performance of GP-UCB indicates that when the
dimensionality is low optimizing the acquisition function might be a reasonable thing to do.

First we test the global optimization schemes on 3 test functions of low dimensionality. The Branin
function is a common benchmark for Bayesian optimization that is 2 dimensional [9]. The Rosen-
brock function is a commonly used non-convex test function for local optimization algorithms. Al-
though unimodal, the optimum of the Rosenbrock function lie in a long narrow valley which make
the function hard to optimize. Finally, the Hartmann3 function is 3 dimensional and has four local
optima. As we can see from Figure 1, SOO-UCB performs competitively against GP-UCB on the
these low dimensional test functions. Both SOO-UCB and GP-UCB achieve very high accuracy up
to 10−8 in terms of the distance to the optimal objective value. In comparison, SOO, due to the lack
of a strong prior assumption, cannot take advantage of the points sampled thus lagging behind. It
appears that at least in this scenario, GP-UCB is a highly competitive algorithm.

In the experiments shown in Figure 2, we compare the approaches in consideration on the Shekel
function and the Hartmann6 function. The Shekel function is 4-dimensional and has 10 local optima.
The Hartmann6 function is 6-dimensional as the name suggests and has 6 local optima. On these
higher dimensional problems, the performance of GP-UCB begins to dwindle. Despite the increase
in dimensionality, SOO-UCB is still able to optimize the test functions to relatively high precision.
SOO does not perform as well as SOO-UCB again because of its weak assumptions. The demise
of GP-UCB on these two test functions may due in part to the inability of an global optimizer
to optimize the acquisition function exactly in each iteration. As the dimensionality increases, so
is the difficulty of optimizing a non-convex function globally as the cost of covering the space
grows exponentially. The problem is compounded by the existence of many local optimum for
each of the test functions considered here. For SOO-UCB, the cost of optimization also grow with
dimensionality. But since SOO-UCB refines the partition of the space in each iteration, it will

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Figure 2: Comparison of GP-UCB, SOO, and SOO-UCB on multi-modal test functions of moderate
dimensionality. The Shekel function is of dimensionality 4 and the Hartmann 6 function is 6 dimen-
sional. In this set of experiments, GP-UCB performs poorly. This may due in part to the hardness
of optimizing the acquisition function.

Table 1: Time required for the test functions measured in seconds. SOO is very fast as it does
not maintain a GP. SOO-UCB maintains uses a GP to produce more accurate posterior estimates
which also makes it slower. Also the frequent rejection of proposals would also result in much
bigger trees which further slows the algorithm. GP-UCB tends is quite slow compared to the other
two algorithms as it not only maintains a GP to but also optimizes its acquisition function in each
iteration.

Algorithm Branin Rosenbrock Hartmann3 Hartmann6 Shekel
GP-UCB 29.9438 29.5716 34.0311 115.2402 100.7770
SOO-UCB 3.0680 3.4693 3.9722 2.0918 3.8951
SOO 0.1810 0.1835 0.1871 0.4313 0.4350

eventually be fine enough such that it attains high precision. The optimization of the acquisition
function through algorithms like DIRECT demands the repartitioning of the space in each iteration.
To reach a finer granularity, we either have to sacrifice speed by building very fine partitions in each
iteration or accuracy by using coarser partitions.

The proposed approach is not only competitive against GP-UCB in terms of effectiveness, it is also
more computationally efficient. As we can see in Table 1, SOO-UCB is about 10-40 times faster
than GP-UCB on the test functions we have experimented with. This is because instead of optimize
the acquisition function in each iteration, the SOO algorithm that sits inside only optimizes once.
SOO-UCB, however, is much slower than SOO. This is because SOO-UCB also employs a GP to
reject points proposed by SOO. To sample one point, SOO may have to propose many points before
one is accepted. For this reason, SOO-UCB would build much bigger trees compared to SOO and
thus slower.

4 Conclusion and Future work

In this report, we present a new global optimization algorithm SOO-UCB. By using SOO and a GP
at the same time, the proposed approach is capable of global optimization without an acquisition
function. We are able outperform the existing BO algorithms on a broad class of test functions
while requiring less computational time. In addition, we discussed the consistency of the proposed
approach. Despite the attractive properties, the convergence rate of this algorithm remains elusive.
In the future, we would like to be able to prove convergence properties of this algorithm.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

References

[1] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization.
In NIPS, pages 2546–2554, 2011.

[2] E. Brochu, V. M. Cora, and N. de Freitas. A tutorial on Bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learn-
ing. Technical Report UBC TR-2009-23 and arXiv:1012.2599v1, Dept. of Computer Science,
University of British Columbia, 2009.

[3] S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvari. X-armed bandits. JMLR, 12:1655–1695,
2011.

[4] A. D. Bull. Convergence rates of efficient global optimization algorithms. JMLR, 12:2879–
2904, 2011.

[5] N. de Freitas, A. Smola, and M. Zoghi. Exponential regret bounds for Gaussian process bandits
with deterministic observations. In ICML, 2012.

[6] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strate-
gies. Evol. Comput., 9(2):159–195, 2001.

[7] M. Hoffman, E. Brochu, and N. de Freitas. Portfolio allocation for Bayesian optimization. In
UAI, pages 327–336, 2011.

[8] David R Jones, C D Perttunen, and B E Stuckman. Lipschitzian optimization without the
Lipschitz constant. J. of Optimization Theory and Applications, 79(1):157–181, 1993.

[9] D.R. Jones. A taxonomy of global optimization methods based on response surfaces. J. of
Global Optimization, 21(4):345–383, 2001.

[10] D.R. Jones, M. Schonlau, and W.J. Welch. Efficient global optimization of expensive black-
box functions. J. of Global optimization, 13(4):455–492, 1998.

[11] Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In Machine Learn-
ing: ECML 2006, pages 282–293. Springer, 2006.

[12] D. Lizotte. Practical Bayesian Optimization. PhD thesis, University of Alberta, Canada, 2008.
[13] D. Lizotte, R. Greiner, and D. Schuurmans. An experimental methodology for response surface

optimization methods. J. of Global Optimization, pages 1–38, 2011.
[14] Daniel Lizotte, Tao Wang, Michael Bowling, and Dale Schuurmans. Automatic gait optimiza-

tion with Gaussian process regression. In Proc. of IJCAI, pages 944–949, 2007.
[15] N. Mahendran, Z. Wang, F. Hamze, and N. de Freitas. Adaptive MCMC with Bayesian opti-

mization. Journal of Machine Learning Research - Proceedings Track, 22:751–760, 2012.
[16] J. Močkus. The Bayesian approach to global optimization. In Systems Modeling and Opti-

mization, volume 38, pages 473–481. Springer, 1982.
[17] R. Munos. Optimistic optimization of a deterministic function without the knowledge of its

smoothness. In NIPS, 2011.
[18] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT

Press, 2006.
[19] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning

algorithms. In NIPS, 2012.
[20] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian process optimization in the

bandit setting: No regret and experimental design. In ICML, 2010.
[21] E. Vazquez and J. Bect. Convergence properties of the expected improvement algorithm with

fixed mean and covariance functions. J. of Statistical Planning and Inference, 140:3088–3095,
2010.

8

