
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Predicting Job Salaries from Text Descriptions

Anonymous Author(s)
Affiliation
Address
email

Abstract

An online job listing web site has extensive data that is primarily unstructured text
descriptions of the posted jobs. Many listings provide a salary, but as many as half
do not. For those listings that do not provide a salary, it is useful to predict a salary
based on the description of that job. We tested a variety of regression methods,
including maximum-likelihood regression, lasso regression, artificial neural net-
works and random forests. We optimized the parameters of each of these methods,
validated the performance of each model using cross validation and compared the
performance of these methods on a withheld test data set.

1 Background

The data set is composed of 244,768 classified advertisements for jobs in the United Kingdom from
the classified advertisement search web site, Adzuna. Each advertisement gives the title of the job, a
plain text description of the job, the location, contract type (full-time or part-time), contract duration
(permanent or contract), the name of the company, a category (such as customer service) and the
annual salary. The majority of the data is found in the unstructured text description of the job. The
challenge is to predict the salary of a job from its text description and other structured data. This
data set and problem were obtained from a machine learning competition hosted by Kaggle [1], a
web site dedicated to hosting machine learning competitions.

2 Methods

2.1 Data model

The data is composed of a job title and description, which is unstructured plain text, as well as
additional structured data, the location, contract type and duration, company and category. The
structured data were treated as categorical variables. The unstructured text features were modelled
using a binary feature bag-of-words model.

The feature hashing trick [2] was used to limit the memory requirements to a fixed size. For each
word in the description, the hash value of that word is calculated using MurmurHash3 [3] and the
corresponding bit of the boolean feature vector is set to one. The size of the feature vector is thus
fixed and does not depend on the variety of words present in the description. Some hash collisions
are expected, but should be relatively rare with a sufficiently large feature vector. We used a feature
vector of size 224 bits, or 16 Mb.

We used a log-transform of the output variable, the salary. Without this transform, for a linear model
each word of the description would contribute a fixed amount to the salary, such as £5,000 for the
word “manager”, or –£10,000 for the word “intern”. This model does not make intuitive sense and
could even result in predicting negative salaries. The effect of the log transform is that each word
of the description instead contributes a multiplicative factor to the salary. For example, the word

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

“manager” may cause the salary to be multiplied by 1.25, whereas the word “intern” may cause the
salary to be multiplied by 0.50.

2.2 Comparison of regression methods

We trained and tested a variety of regression methods, maximum-likelihood regression, lasso re-
gression, artificial neural networks, dropout neural networks and random forests. We used cross
validation to optimize the parameters of the models. We then compared the performance of each
optimized model by comparing the mean absolute error of each model’s predictions on a withheld
data set, which was not used for training the models. The software package Vowpal Wabbit 7.2.0
[4] was used for all of these regression methods except the random forest, for which we used the
scikit-learn 0.13.1 RandomForestRegressor [5].

2.3 Maximum-likelihood regression

We used maximum-likelihood regression to predict salaries. We used a squared-error loss function
and employed online stochastic gradient descent to minimize the cost function, J(θ) of equation 1.

J(θ) = (y −Xθ)T (y −Xθ) (1)

2.4 Lasso regression

Since we have a very large number of features, namely the complete vocabulary of words used in the
job descriptions, we used lasso regression to select informative features. We used a squared-error
loss function with an L1 regularizer and employed online stochastic gradient descent to minimize
the cost function, J(θ) of equation 2. The optimal value for the regularization parameter, λ, was
found using cross validation.

J(θ) = (y −Xθ)T (y −Xθ) + λ ‖θ‖1 (2)

The learned feature weights of some common professions are shown in a word cloud [6] in Figure 1,
where the size of the word is proportional to its weight.

Figure 1: A word cloud showing the weights of common professions

2.5 Neural network regression

To test non-linear regression, we trained an artificial neural network with one hidden layer, a sig-
moidal hidden-layer activation function and a linear output function. As with the previous regres-
sors, we used a squared-error loss function, an L1 regularizer and employed online stochastic gra-
dient descent to minimize the cost function, J(θ). The variable αj of equation 3 is the vector of
weights of the jth hidden-layer neuron, and β is the weights of the output neuron.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

J(α,β) = (y − ŷ)T (y − ŷ) + λ
∑
j

‖αj‖1 + λ ‖β‖1 (3)

ŷi = ui · β
uij = tanh(Xi ·αj)

We alternated between optimizing the number of neurons and the regularization parameter, λ, us-
ing cross validation, until it converged. We note that this method may have converged on a local
minimum, and it is possible that a better global minimum may exist.

2.6 Dropout neural network regression

We also trained a dropout neural network [8], which randomly omits each neuron with probability
one half at each step of the stochastic gradient descent optimization. Randomly omitting neurons
prevents overfitting the model by preventing neurons from co-adapting. The optimization of the
number of neurons and regularization parameter was conducted as for the canonical neural network.

2.7 Random forest regression

We used random forest regression [9] to predict salaries. We used the scikit-learn [5] implementa-
tion, RandomForestRegressor, which does not support sparse feature vectors. For this reason, it was
necessary to use a subset of features. We selected words from the lasso model that had the strongest
weights. Additional informative words were selected by separating the jobs into five quantiles by
salary and selecting words that gave the largest information gain (formula 4) [10], which is to say,
those words that performed best at predicting the salary quintile of a job.

IG(T, a) = H(T)−H(T |a) = H(T)−
1∑

v=0

|{x ∈ T |xa = v}|
|T |

H({x ∈ T |xa = v}) (4)

H(X) = E[I(X)] = E[− ln(P (X))] =

5∑
i=1

P (xi) logP (xi) = −
5∑

i=1

ni
N

log
ni
N

The depth of each tree was unlimited and stopped when only two elements remained in each leaf
node. Each tree was trained on all the data, but on a random subset of features. The number of
features used in each tree is the square root of the number of available features.

3 Results

3.1 Comparison of regression methods

We optimized the hyperparameters of each model using cross validation, where 70% of the data
was used to train the model, and 15% of the data was withheld from training and used to validate
the performance of the trained model. A final 15% of the data was used to test the generalized
performance of the optimized models. The mean absolute error of each model is shown in Table 1.

Table 1: Mean absolute error (MAE) of various regression methods
Method Training (£) Validation (£) Test (£)

Maximum likelihood 3404 7195 6376
Lasso 4124 6391 5945
Neural network 3912 6284 5868
Dropout NN 3947 6312 5876
Random forest N/A† N/A† 5000

†The random forest was run by my co-author, and the training and validation errors were not recorded.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

3.2 Lasso regression

The L1 regularization parameter λ of the lasso regressor was optimized using cross validation, the
result of which is shown in Figure 2. The optimal value was found to be λ = 1.4 · 10−7. Of the
199,614 distinct words seen in the job descriptions, 88,087 had non-zero weights.

Figure 2: Optimizing λ, the L1 regularization parameter of the lasso regressor

3.3 Neural network regression

The optimal number of neurons in the hidden layer of the artificial neural network was found using
cross validation, the result of which is shown in Figure 3. The optimal number of neurons was found
to be two. That the optimal number of neurons is so small is a surprising result. Also unexpected is
that the training error increases with an increasing number of neurons. We would expect the training
to continue to decrease with an increasing number of neurons, as the increasing complexity of the
model becomes overfit to the training data.

Figure 3: Optimizing the number of hidden-layer neurons of the neural network (λ = 1.2 · 10−7)

The L1 regularization parameter λ of the artificial neural network was optimized using cross valida-
tion, the result of which is shown in Figure 4. The optimal value was found to be λ = 1.2 · 10−7.

3.4 Dropout neural network regression

We similarly optimized the number of neurons of a dropout neural network and the L1 regularization
parameter λ using cross validation and found the optimal number of neurons to be 26, as shown in
Figure 5, and the optimal L1 regularization parameter to be λ = 1.4 · 10−9.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 4: Optimizing λ, the L1 regularization parameter of the neural network with 2 hidden-layer
neurons

Figure 5: Optimizing the number of hidden-layer neurons of the dropout neural network (λ =
1.4 · 10−9)

Randomly omitting neurons while training effectively randomly trains 2n different models, where
n is the number of neurons. This ensemble of neural networks acts as a form of regularization, and
so it is not surprising to see that the optimal value of the L1 regularization parameter λ is 100-fold
smaller for the dropout neural network than the canonical neural network.

3.5 Random forest regression

To optimize the random forest, we tried limiting the depth of the tree and increasing the number
of trees and found that fewer trees with unlimited depth performed better. Our final random forest
regressor was composed of 50 trees. The number of trees was limited by available computing power,
and using more trees should improve performance.

We used 1,000 features and varied the split between the number of features selected by the largest
absolute lasso weights and by the largest information gain in distinguishing the salary quintiles.
We found that a split of 800 features selected by lasso and 200 features selected by information
gain performed best. We also tested 2,000 features and found, somewhat unexpectedly, that 1,000
features performed better. Since each tree is trained on a random subset of features, it becomes
important that each feature be informative.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

4 Conclusions

The random forest outperformed the neural network, which outperformed the dropout neural net-
work, which outperformed the lasso regression, which outperformed the maximum-likelihood re-
gression. The only surprise here is that the dropout neural network did not perform better than the
canonical artificial neural network. A dropout neural network is able to use more neurons than a
canonical neural network while still avoiding overfitting, and because it is effectively an ensemble
method, it should reduce error due to variance, just as a random forest does.

We are able to predict the salary of a job using a textual description of that job to within a mean
absolute error of £5,000. A human tasked with the same problem would not, we expect, perform
any better at predicting salaries. We find these results quite satisfactory. That being said, there is
almost certainly room for improvement.

The bag-of-words model used is the simplest possible feature space. Other natural language pro-
cessing techniques could help, such as removing stop words and using longer strings of words as
features such as bigrams and trigrams. Another appealing option would be to use simple syntatic
analysis to extract noun phrases such as “heavy machinery technician” from the description.

An additional machine learning technique to consider would be k-nearest-neighbours adapted for
regression, where the prediction is a weighted average of the salaries of the k most similar job
descriptions, and closer neighbours are weighted more heavily than distant neighbours.

We expect that the data would have underlying structure. For example, a number of job postings may
be summarized as “A senior programming job in London”, and we expect these jobs to have similar
salaries. It would be valuable to explore machine learning techniques that attempt to capitalize on
this underlying structure, such as a deep-learning neural network, or latent Dirichlet allocation [11],
which assumes that the distribution of words for each job depends on a latent category of that job,
such as “service industry”, and attempts to learn those categories from the data.

References
[1] Kaggle Inc. (2013). Job Salary Prediction.

http://www.kaggle.com/c/job-salary-prediction

[2] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola and Josh Attenberg (2009). Feature
Hashing for Large Scale Multitask Learning. Proc. ICML.
http://alex.smola.org/papers/2009/Weinbergeretal09.pdf

[3] Austin Appleby (2011). MurmurHash.
https://code.google.com/p/smhasher

[4] John Langford (2007). Vowpal Wabbit – a fast online learning algorithm.
https://github.com/JohnLangford/vowpal wabbit

[5] Pedregosa, Fabian, et al. (2011). Scikit-learn: Machine learning in Python. The Journal of Machine
Learning Research, 12, 2825-2830.
http://scikit-learn.org

[6] Jonathan Feinberg (2013). Wordle – Beautiful Word Clouds.
http://www.wordle.net

[7] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society, Series B 58 (1): 267–288.
http://www.jstor.org/stable/10.2307/2346178

[8] Hinton, Geoffrey E., et al. (2012). Improving neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580.
http://arxiv.org/abs/1207.0580

[9] Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
http://link.springer.com/article/10.1023/A:1010933404324

[10] Wikipedia authors (2013). Information gain in decision trees.
http://en.wikipedia.org/wiki/Information gain in decision trees

[11] Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. The Journal of machine
Learning research, 3, 993–1022.
http://dl.acm.org/citation.cfm?id=944937

6

http://www.kaggle.com/c/job-salary-prediction
http://alex.smola.org/papers/2009/Weinbergeretal09.pdf
https://code.google.com/p/smhasher
https://github.com/JohnLangford/vowpal_wabbit
http://scikit-learn.org
http://www.wordle.net
http://www.jstor.org/stable/10.2307/2346178
http://arxiv.org/abs/1207.0580
http://link.springer.com/article/10.1023/A:1010933404324
http://en.wikipedia.org/wiki/Information_gain_in_decision_trees
http://dl.acm.org/citation.cfm?id=944937

	Background
	Methods
	Data model
	Comparison of regression methods
	Maximum-likelihood regression
	Lasso regression
	Neural network regression
	Dropout neural network regression
	Random forest regression

	Results
	Comparison of regression methods
	Lasso regression
	Neural network regression
	Dropout neural network regression
	Random forest regression

	Conclusions

