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Abstract

In this study, a multiparametric magnetic resonance image (MRI) based technique
of detecting prostate cancer is developed. A machine learning algorithm, based
on random forest is used to classify the normal and cancer regions. Three features
extracted from dynamic contrast enhanced MRI and two features extracted from
diffusion tensor MRI is used to train the classifier. The classifier is trained to
detect prostate cancer in the peripheral zone and using the trained classifier, cancer
probability map is generated for the entire prostate gland.

1 Introduction

As the second leading cause of cancer-related death among males [1] prostate cancer patients require
non-invasive detection and staging. Mortality is often due to the metastasis of cancer from prostate
to bones which happens only in a small number of patients. In fact, prostate cancer, if detected prior
to spreading to bones, can be controlled. Since the existing diagnosis techniques can not adequately
determine the stage of prostate cancer, radical prostatectomy is generally used in treating prostate
cancer [2], even for patients with pathologically insignificant cancer [3]. This surgery eventually
could lead the patient to incontinence and impotence, and other sexual and urinary complications.
To assess prostate cancer, biopsy under transrectal ultrasound (TRUS) is used for most of the cases.
However, TRUS cannot accurately image prostate cancer, and therefore biopsy protocols suffer
from false negatives or under-sampling of major tumors [4]. Therefore, there is growing need for
new diagnosis techniques that can identify the location and stage of prostate cancer adequately and
non-invasively.

Magnetic resonance imaging (MRI) has proven its ability to visualize the prostate anatomy [5].
However its poor specificity [6] and insufficient sensitivity [7] made T2-weighted MRI less applica-
ble for diagnosis and grading of prostate tumors. Since mid-1980s, different MRI modalities have
been investigated for the assessment of prostate cancer [6]. Particularly, diffusion MRI (DTI) has
shown very promising results and correlation with Gleason grade [8]. A number of recent MRI stud-
ies have demonstrated that the detection and grading of prostate cancer can be improved through the
addition of DTI [9] and dynamic contrast enhanced imaging (DCE) [10] to an MRI staging exam.
Diffusion imaging characterize the de-phasing of the MR signal by molecular diffusion. Prostate
cancer changes the regular pattern of distribution of prostate gland and this irregular distribution and
increased cellular density results in lower diffusivity (D) and decreased aparent diffusion coefficient
(ADC) value in DTI. The structural changes also alters the uptake of contrast agent in dynamic
contrast enhanced imaging (DCE). In DCE MRI, an contrast agent of small molecular weight is
injected into the patient, and the increase in signal intensity is measured from fast T1-weighted im-
ages. The rate of enhancement depends on the vascular volume and permeability of the vessels, and
the magnitude depends on extravascular/extracellular leakage space. Studies have shown that the
rate of contrast enhancement is higher and faster in the cancer affected areas [11]. However, each
modality has their own advantages and disadvantages, and therefore no one modality has proven

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

to be the the perfect diagnosis method for prostate cancer detection. The best characterization of
prostate cancer will most likely result from a multiparametric MRI exam using 3T magnetic reso-
nance scanners [6]. The most recent reported results show that multiparametric MRI at 3T, which
combines dynamic contrast enhanced (DCE) imaging with diffusion weighted imaging provides the
highest performance in terms of area under receiver operating characteristic (ROC) curve [2].

In this study, a machine learning approach based on random forest is used to develop a multiparamet-
ric magnetic resonance imaging based technique for detection of prostate cancer. Features extracted
from dynamic contrast enhanced MRI and diffusion tensor MRI is used to train and test the clas-
sifier. Based on the classification, cancer probability map is generated for the entire prostate gland
using the standard Jet colormap, where hot color represents high probability of cancer.

2 Materials and methods

2.1 Prostate MRI data

For this study, I used MRI data from two different studies and both of them was approved by Clinical
Research Ethics Board of our institution. One dataset was from a biopsy study and another dataset
was from patients scheduled for radial prostatectomy.

2.1.1 Biopsy data

The biopsy dataset was collected in 2009 from 29 patients with a high clinical suspicion for prostate
adenocarcinoma due to an elevated prostate specific antigen (PSA) and/or palpable prostatic nodule.
Average PSA was 8.5 ng/mL (range: 0.9415 ng/mL). Before entering the study, each patient gave
their written consent to take part in the study. The biopsies were performed under local anesthetic
and the number of biopsies obtained from the peripheral zone (PZ) was determined by prostate
gland size. In patients with a prostate gland of 30 cc or less, eight biopsies (base: right and left;
midgland: right lateral, left lateral, right medial, left medial; apex: right and left) were taken. For
prostate glands ranging from 31 to 60 cc, 10 biopsies (base: right lateral, left lateral, right medial,
left medial; midgland; and apex biopsies as above) were obtained. For prostate glands greater than
60 cc, 12 biopsies were obtained (apex: right lateral, left lateral, right medial, left medial; base; and
midgland biopsies the same as the 10 biopsy scheme). The dataset included a total of 240 negative
biopsy cores and 29 positive biopsy cores. The positive cores were from 10 patients. The histology
was interpreted with assignment of the Gleason score by several different experienced anatomic
pathologists who practice general and subspecialty uropathology.

2.1.2 Prostatectomy data

The Prostatectomy data used here was obtained in 2010 from a different population than the biopsy
cases described above. The patients recruited for this study have not received any therapy before
radical prostatectomy. To acquire the whole-mount pathology analysis, the radical prostatectomy
specimens were dissected and histopathologically examined in a uniform manner. The specimens
were dissected following a minimum of 24-h fixation in 10% buffered formalin. The apical and
bladder neck tissue was removed, using 5-mm-thick layers. To cut the prostate gland, a device
described in [12] was used and the prostate gland was cut in serial transverse cuts perpendicular
to the posterior capsule, at 4-mm intervals, from inferior to superior. This procedure allowed us to
obtain reasonably good correspondence between the pathology slices and the MR image slices.

2.1.3 MRI data collection protocol

MRI examinations were performed on a 3 Tesla (T) MRI scanner (Achieva, Philips Healthcare, Best,
The Netherlands) and MRI signals were acquired with a combination of an endorectal coil (Medrad,
Pittsburgh, PA) and a cardiac phased-array coil (Philips Healthcare, Best, The Netherlands). Fast
spin-echo T2-weighted images were acquired using repetition time (TR) of 1851 ms and effective
echo time (TE) of 80 ms with 14 cm field of view (FOV) (284×225 matrix). Each slice was 4 mm
thick and there was no gap between the slices. From this sequence, 12 axial slices covering the entire
gland were then selected to use for the DTI and DCE MRI scans. DTI data were acquired using a
diffusion weighted single shot echo planar imaging (EPI) sequence (TR = 2100 ms TE = 74 ms,
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FOV = 24 cm, 128×115 matrix, b-value = 0 and 600 s/mm2 , 18 averages, 6 noncollinear gradient
directions). DCE T1-weighted images were acquired using a three-dimensional T1-weighted spoiled
gradient echo-sequence (TR/TE = 3.4/1.06 ms, flip angle = 15◦, FOV = 24 cm, 256×163 matrix).
The contrast agent used here was Gd-DTPA (Magnevist, Berlex Canada). 0.1 mmol/kg of Gd-DTPA
was injected with a motorized power injector within 10 s at the rate of 2 mL/s, followed by a 20 mL
flush of saline. This resulted in a time resolution of 10.6 s per 12 slices. This resulted in a time
resolution of 10.6 s per 12 slices.

The total time of the MRI examination was approximately 45 min. The DTI data were processed
off-line to calculate FA and average diffusivity (D) values. Diffusion weighted images were regis-
tered to the nonweighted b = 0 image with a mutual information algorithm before calculating the
eigenvalues of the diffusion tensor and generating maps of the average diffusivity (D) and fractional
anisotropy (FA) with the proprietary DTI processing toolbox PRIDE (Philips Healthcare, Best,The
Netherlands). DCE MRI data were processed off-line with software procedures developed in house
using Matlab (Math-works, Natick, MA) and Igor Pro (WaveMetrics, Port-land, OR). Pharmacoki-
netic parameters: volume transfer constant (Ktrans), fractional volume of the extra-vascular extra-
cellular space(ve) and fractional plasma volume (vp), were calculated by fitting the contrast agent
concentration versus time curves to the extended Kety model. Fitting was carried out in every pixel
of every slice within a region of interest (ROI) encompassing the prostate gland to generate maps of
the pharmacokinetic parameter as described by Tofts et al [13].

2.2 Features of DTI and DCE MRI

To calculate the cancer probability, in this work I have used 2 parameters extracted from Diffu-
sion Tensor MRI (DTI) and 3 parameters extracted from Dynamic Contrast Enhanced (DCE) MR
images. Diffusion tensor magnetic resonance imaging (DT-MRI) maps the diffusion of hydrogen
atoms within water molecules in biological tissues. Diffusion process in tissues depends on its
interaction with obstacles (micromolecules, fibres, membranes) and mapping of diffusion pattern
can reveal microscopic details about tissue structure and differentiate between normal and diseased
tissues. In the presence of a strong magnetic field, this diffusion pattern results in irreversible de-
phasing of MR signal making diffusion a dominant source of contrast in MRI [14]. In this study,
two parameters extracted from DTI is used as feature- apparent diffusion coefficient (ADC) and
fractional anisotropy (FA). ADC is an indicator of the reduction in MR signal due to the amount of
diffusion. Since diffusion pattern changes in cancer tissues, it results in a decrease in ADC. Frac-
tional anisotropy is a measure of diffusivity differences in different directions, and it is also affected
by the diffusion pattern change due to tumors.

In dynamic contrast-enhanced MRI (DCE-MRI), a small molecular weight contrast agent, generally
gadolinium-DTPA, is injected into the patient and the distribution of the contrast agent is repeatedly
imaged. DCE-MRI has been shown to significantly improve tissue characterization and the pharma-
cokinetic modeling parameters have shown promising results in differentiating cancer and normal
tissue in prostate gland [14]. In this work, three parameters extracted from DCE-MRI is used as
feature vectors- volume transfer constant (Ktrans), fractional volume of the extra-vascular extra-
cellular space(ve) and fractional plasma volume (vp). Depending on the balance between capillary
permeability and blood flow in the tissue of interest, the volume transfer constant, Ktrans, has sev-
eral physiologic interpretations. In high-permeability situations where flux across the endothelium
is flow limited, the transfer constant is equal to the blood plasma flow per unit volume of tissue. In
case of low permeability, transfer constant equals to the permeability surface area product between
blood plasma and the extra-vascular extra-cellular space, per unit volume of tissue [13]. Fractional
plasma volume (vp) is the volume of blood plasma per unit volume of tissue, and ve is the volume
of extra-vascular extra-cellular space per unit volume of tissue.

2.3 Selecting ROI from MRI

The histology slides were examined and the regions of the prostatic carcinoma were outlined with
assignment of the Gleason score by an anatomic pathologist with over 20 years of experience. The
cutting device used to cut the gland ensured the matching of two-dimensional MRI slices with
pathology slides. To relate the ROIs from the DTI and DCE parameter maps with the corresponding
pathology slides, the image of the entire prostate gland in the pathology slide and in the parameter
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maps were divided into the same number of grids, where the area of each grid was 3.29×3.29 mm2.
Feature vectors are calculated by picking up grid from the peripheral zone of the gland and averag-
ing over the entire grid. Thus each 3.29×3.29 mm2 area of the gland gave rise to one feature vector.
The label or class of the feature vector was selected from the same grid in pathology image, where
a class of 1 is assigned if that grid corresponds to a cancer region in pathology image, and class of 0
is assigned if it corresponds to healthy region.

2.4 Classification by random forest

Two features extracted from DTI (ADC and FA) and three features extracted from DCE-
MRI (Ktrans, ve, vp) were used to construct a five dimensional feature vector, x =
[ADC,FA,Ktrans, ve, vp]. Figure 1 shows the inter-relationships among these features. Each
image I(i,j) shows feature-i vs. feature-j, where blue dots denote healthy samples and red dots de-
note cancer samples. As can be seen, the features are highly correlated and therefore they can not
be classified by simple linear methods. Hence I used random forest to classify them.

Figure 1: Cancer and normal samples are plotted as a function of features from DTI and DCE. Red
dots denote cancer samples and blue dot denotes healthy samples.

Random forest algorithm is applied to classify normal and cancer regions in prostate gland based on
these five features. Random forests are an ensemble learning method for classification that operates
by constructing a number of bagged decision trees. Each decision tree is constructed from the entire
training data or a subset of it. For splitting each node of the tree, all the possibilities of splitting
the node is investigated. The split that maximizes the information gain is selected and the node is
split into two daughter nodes. Random forest gives its output probability of test data by averaging
the probability values given by all of its decision trees. The random forest algorithm in this work
follows Breiman’s algorithm. In this algorithm, each tree is trained on a bootstrapped sample of the
original data set. For growing each tree, each time N-samples were taken with replacement, where
N equals the total number of input data. To split each node, two variables at random were considered
for splitting. An ensemble of 50 bagged decision trees was trained with a minimum leaf size of three
samples.
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3 Result Analysis

To study the role of DCE and DTI separately, three classifiers were trained with each method, one
classifier with only DTI parameters as feature vectors (ADC and FA), one with only DCE parameters
(Ktrans, ve, vp) and one classifier was trained with DTI and DCE parameters together. All features
were collected from the peripheral zone of prostate gland and the classifiers were trained to detect
the presence of cancer in the peripheral region.

Figure 2: Classification result from Random Forest. The left figure shows the accuracy, precision,
sensitivity and specificity for the prostatectomy data. Right figure shows the accuracy, precision,
sensitivity and specificity for the biopsy data.

Figure 3: ROC curve for prostatectomy dataset. The left figure is from random forest and right
figure is from support vector machine classification.

From the prostatectomy dataset, 140 samples from 4 patients are used to train and test the classifier.
All the samples were taken from the peripheral zone of prostate gland and out of 140 samples 60
samples were from cancer regions and remaining 80 were normal samples. The classifiers were
trained on a leave-one-patient-out basis. Each time the classifiers were trained on 3 patient data and
tested on the remaining patient. The area under receiver operating characteristics (ROC) curve was
0.59 with onlt DTI features, 0.867 with only DCE features and 0.816 with combined DTI and DCE
featuers. The combined feature vector resulted in higher area under ROC curve(AUC) than with
DTI features alone and was similar to the AUC value found with DCE parameters only.

With the combined feature vector, at the decision threshold of 0.5, 27 tumors were misclassified and
10 normal samples were misclassified as tumors. 103 out of 140 samples were correctly classified
with an accuracy of 73.6% and specificity of 72.2%. Optimum threshold was found to be 0.32 with
a maximum accuracy of 78.6%. With only DTI parameter, 26 tumors were misclassified and 91
out of 140 samples were correctly classified at decision threshold of 0.5 with accuracy of 65% and
specificity of 68.7%. The maximum accuracy (70.7%) was reached at threshold 0.68. With only
DCE parameters, 15 tumors were misclassified and 111 out of 140 samples were correctly classified
with a specificity of 81.5% and accuracy of 79.3%. Figure 2(left) shows the accuracy, precision,
sensitivity and specificity values with DTI, DCE and combined feature vector from prostatectomy
dataset.
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The biopsy dataset had 272 samples from 29 patients and the classifier was trained and tested one
leave-one-patient-out basis. The area under ROC curve (AUC) was found to be 0.844 with DTI fea-
tures alone, 0.715 with DCE features alone and 0.935 with combined DTI and DCE features. The
combined features showed improvement in AUC values than DTI and DCE parameters alone. With
combined feature vector, at the decision threshold of 0.5, 252 samples were correctly classified and
only 13 cancer samples were misclassified, whereas with DTI and DCE parameters alone, 26 and
23 tumors were misclassified respectively. With combined feature vector, the accuracy was 92.6%
with specificity 94.8% and a maximum accuracy of 93.8% was reached at threshold 0.47. With
only DTI and DCE parameters the accuracy was 85.7% and 86.8% and specificity was 89.8% and
90.9% respectively. Figure 2(right) shows the accuracy, precision, sensitivity and specificity values
from biopsy dataset. For both the dataset, combined feature vector clearly showed improvement in
sensitivity over classification with only DTI and DCE feature vectors. With biopsy data, combined
feature vector showed improved accuracy and specificity while with prostatectomy data it showed
comparable values with classification by DCE feature vector. The increase in sensitivity by combin-
ing DTI and DCE features shows the potential of multiparametric MRI in classification. However,
the lower specificity and accuracy value in prostatectomy dataset may have arisen due to the fact
that the prostatectomy dataset was small. The correct validation of accuracy would be possible with
large dataset.

Figure 4: Comparison of classification results from random forest with support vector machine
classification.

To compare the results of random forest, the prostatectomy dataset was classified by support vec-
tor machine classification (SVM), with a radial basis function as the kernel. The library used
here is the publicly available C++ implementation of the SVM algorithms known as LIBSVM
(http://www.csie.ntu.edu.tw/ cjlin/libsvm/). Figure 4 shows the accuracy, precision, sensitivity and
specificity values resulted from the classification with combined five dimensional feature vector by
random forest and SVM. Random forest shows improvement in accuracy, sensitivity and specificity.

The trained random forest classifier was used to generate cancer probability maps for the entire
prostate gland. To generate the probability map, feature vectors were constructed from the DCE and
DTI parametric maps for each pixel of the gland. These feature vectors were then used as the test
samples and each pixel was classified using the trained classifier. The probability scores given to
each pixel were plotted using standard Jet colormap to generate cancer probability map of the entire
gland. Higher probabilities gave rise to hot colors in the probability map. Figure 5 shows one case
where the main pathologic finding was a tumor with Gleason score 3+3 in the left peripheral zone.
The corresponding cancer probability map generated by the classifier is shown along with the T2-
weighted MR image. The hot spot is outlined in the probability map. The cancer probability map
clearly shows higher probability values in the cancer region. However, there are hot spots in central
and transitional zones of the gland. This is due to the fact that the classifier was trained only for the
peripheral zone, and since the parameter values are different in other zones of the gland, the classifier
can not distinguish normal and cancer regions in central or transitional zone of the prostate gland.
Figure 6 shows another case where the main pathologic finding was tumor in the left peripheral zone
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Figure 5: Cancer probability map with corresponding T2-weighted MR image and histopathology
slide. The main pathologic finding is tumor in the left peripheral zone with Gleason score 3+3.
Corresponding hot spot is outlined in the probability map.

Figure 6: Cancer probability map with corresponding T2-weighted MR image and histopathology
slide. The main pathologic finding is tumor in the left peripheral zone with Gleason score 3+4.
Corresponding hot spot is outlined in the probability map.

with Gleason score 3+4. The cancer probability map for this slide can also distinguish the tumor
region from the surrounding healthy region.
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4 Conclusion

A random forest classifier, trained by combination of DCE and DTI MRI features, provided helpful
cancer probability maps for detection of prostate cancer. The performance of the method is reported
on a biopsy dataset of 29 patients, and on a prostatectomy dataset of 5 patients. The performance
of random forest was compared with support vector machine classifier, and random forest proved to
be the better choice for prostate cancer detection in terms of accuracy and sensitivity. The generated
cancer probability maps for the entire gland can distinguish cancer in the peripheral zone.
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