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Outline of the lecture
This lecture will teach you how to fit nonlinear functions by using 
bases functions and how to control model complexity. The goal is for 
you to:

� Learn how to derive ridge regression.
� Understand the trade-off of fitting the data and regularizing it. � Understand the trade-off of fitting the data and regularizing it. 
� Learn polynomial regression.
� Understand that, if basis functions are given, the problem of 
learning the parameters is still linear.
�Learn cross-validation.
� Understand the effects of the number of data and the number of 
basis functions on generalization.



Regularization



Derivation



Ridge regression as constrained optimization



Regularization paths
Asδδδδ increases, t(δ)δ)δ)δ) decreases and each θθθθi goes to zero.
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Going nonlinear via basis functions
We introduce basis functions φ(·) to deal with nonlinearity:

y(x) = φ(x)θ + ǫ

For example, φ(x) = [1, x, x2],



Going nonlinear via basis functions

y(x) = φ(x)θ + ǫ

φ(x) = [1, x1, x2, x
2
1, x

2
2]φ(x) = [1, x1, x2]



Example: Ridge regression with a polynomial of degree 14
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Kernel regression and RBFs
We can use kernels or radial basis functions (RBFs) as features:

φ(x) = [κ(x,µ1, λ), . . . , κ(x,µd, λ)], e.g. κ(x,µ
i
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We can choose the locations µ  µ  µ  µ  of the basis functions to be the inputs. 
That is, µµµµi ==== xi . These basis functions are the known as kernels. 
The choice of width λλλλ is tricky, as illustrated below. 

Too small λλλλ
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Too large λλλλ



The big question is how do we 
choose the regularization coefficient, 

the width of the kernels or the the width of the kernels or the 
polynomial order? 



One Solution: cross-validation



K-fold crossvalidation

The idea is simple: we split the training data into K folds; then, for each
fold k ∈ {1, . . . ,K}, we train on all the folds but the k’th, and test on thefold k ∈ {1, . . . ,K}, we train on all the folds but the k’th, and test on the
k’th, in a round-robin fashion.

It is common to use K = 5; this is called 5-fold CV.

If we set K = N , then we get a method called leave-one out cross
validation, or LOOCV, since in fold i, we train on all the data cases
except for i, and then test on i.



Example: Ridge regression with polynomial of degree 14



Effect of data when we have the right model

yi = θθθθ0000 ++++ xi θθθθ1111 + + + + xi
2 θθθθ2222 ++++N ( 0000 , σ σ σ σ 2 )



Effect of data when the model is too simple

yi = θθθθ0000 ++++ xi θθθθ1111 + + + + xi
2 θθθθ2222 ++++N ( 0000 , σ σ σ σ 2 )



Effect of data when the model is very complex

yi = θθθθ0000 ++++ xi θθθθ1111 + + + + xi
2 θθθθ2222 ++++N ( 0000 , σ σ σ σ 2 )





Confidence in the predictions



Next lecture

In the next lecture, we introduce Bayesian inference, and show how it 
can provide us with an alternative way of learning a model from data.


