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Outline of the lecture

This lecture introduces us to the topicsoper vised learning. Here
the data consists afiput-output pairs. Inputs are also often referred
to ascovariates, predictorsandfeatures, while outputs are known
asvariates andlabels. The goal of the lecture is for you to:

1 Understand the supervised learning set

1 Understand linear regression (akast squares)

1 Understand how to apply linear regression models to make
predictions.

1 Learn to derive the least squares estimate by optimization.



Linear supervised learning

1 Many real processes can deproximateawvith linear models.
d Linear regression often appears asaiuleof larger systems.
[ Linear problems can be solvanalytically.

O Linear prediction provides an introduction to many ofdhes
conceptof machine learning.



We are given a training dataset of n instances of input-ouput pairs
{Xim, ¥Vin}. Bach input x; € R is a vector with d attributes. The
inputs are also known as predictors or covariates. The output, often
referred to as the target, will be assumed to be univariate, y; € R, for
NOW. =~
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A typical dataset with n = 4 instances and 2 attributes would look d:’z
like the following table:

Wind speed People inside building Energy requirement

| 100 2 5
1 50 42 25
g 45 31 22
ey 60 35 18

X0 = 190 2] R :[ﬂ



Energy demand prediction

Given the training set {x1..,,¥1.»}, we would like to learn a model of
how the inputs affect the outputs. Given this model and a new value
of the input x,,,1, we can use the model to make a prediction 7(x,,.1).
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Prostate cancer example

 Goal Predict a prostate-specific
antigen (log ofpsg from a number of
clinicat measures in men who are about
to receive a radical prostatectomy.

dTheinputsare:

® Log cancer volumedavol)

« Log prostate weighiweighi)

° Agg/

» Log of the amount of benign prostatic hyperplasia
(Ibph)

» Seminal vesicle invasiors\) - binary

» Log of capsular penetratioit)

» Gleason scorey(easol) —ordered categorical

» Percent of Gleason scores 4 op§d49

Which inputsare more important?

s
[Hastie, Tibshirani & Friedman book]
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Linear prediction - 16,439,
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In general, the linear model is expressed as follows: I
d =12 ... W
) )
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Yi = Z 505, -
= J= \)‘2’-”4

where we have assumed that x;; = 1 so that 6 corresponds to the
intercept of the line with the vertical axis. #; is known as the bias or

offset.

In matrix form, the expression for the linear mociiel is:
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Wind speed People inside building Energy requirement

100
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45
60

[ 5]

—

25
22
18
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For our energy prediction example, we would form the following ma-

trices with n =4 and d = 3:

5!
125
y_ 22 )
_18_

X =

Suppose that @ = [1_0_0.5]". Then, by multiplying X times 6, we
would get the following predictions on the training set:
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1 50 42
1 45 31
1 60 35

1
0
0.5

P‘( eo&m& dong M
e oo™
sel



Linear prediction

Likewise, for a point that we have never seen before, say x =[50 20],
we generate the following prediction:

y(x)=[1/5020[ 17 =1+0+10=11.




Optimization approach

Our aim is to mininimise the quadratic cost between the output labels

and the model predictions
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Optimization approach
J(6) = (y — X6)" (y — X8) = i(’ya -x,0) [’Rwel
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Optimization: Finding the minimum

J(0) = (y —X0)"(y — X0) = Z(y@ —x/6)’

Sugpese n=3  d=1
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Optimization

) M‘\ ()‘;Z\“
J(0) =(y —X68) (y — X0)
—— J
We will need the following results from matrix differentiation:
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Least squares estimates




Multiple outputs

If we have several outputs y,; € R, our linear regression expression

becomes:
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Next lecture

In the next lecture, we learn to derive the linear regressionagesm
by maximum likelihood with multivariate Gaussian distributions.

Please go to the Wikipedia page for the multivariate Normal
distribution beforehand.



