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Outline of the lecture

This lecture provides an overview of two state-of-the-art neural
networks: The google net and dropout nets. It discusses:.

1 Unsupervised learning with NNs (autoencoders)
(1 Object recognition (classification and detection)
1 Pooling

1 Local contrast normalization

1 Group regularization

] Regularization via dropout
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From Patches to High-Resolution Images

IDEA: have one subset of filters applied to these locations,

Ranzato



From Patches to High-Resolution Images

IDEA: have one subset of filters applied to these locations,

Ranzato



From Patches to High-Resolution Images

Train jointly all iar'ame’rer's.

No block artifacts
Reduced redundancy

Gregor LeCun arXiv 2010
Ranzato, Mnih, Hinton NIPS 2010



[Andrew Ng, MLSS 2012]



Autoencoders
self-taught learning / transfer learning
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e.g., smooth L penalty: ¢g(.) := log(cosh(.))



Activation sparseness regularizer
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Autoencoders with pooling
(Simple and complex cells)




POOLING

By "pooling” (e.g., max or average) filter
responses at different locafions we gain
robustness to the exact spatial location
of features.
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More |layers.

deep learning



Greedy layer-wise training
oy
> P(y=0|x)

— Ply=1]x)

—> Py=2x)

O

Input Softmax
Output (Features Il) classifier

Input Features II Output
(Features |)

[Andrew Ng, MLSS 2012]
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Google autoencoder minimize
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POOLING & LCN

Over the years, some new modules have proven to be very
effective when plugged into conv-nets:

- L2 Pooling

layer i layeri+1
N(x,y) g ’ \J; ) \x’y) -

- Local Contrast Normalization

layer i layeri+1
N Sy T M Ny
(x,) i+1,x,y
N(xsy) O-Z,N()C,y)
Jarrett et al. "What is the best multi-stage architecture for object 12

recognition?” ICCV 2009 Ranzato *§



L2 POOLING

L2 Pooling
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Kavukguoglu et al. "Learning invariant features ...” CVPR 2009 Ranzato =4



L2 POOLING

L2 Pooling
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Kavukguoglu et al. "Learning invariant features ..."” CVPR 2009 Ranzato =4



L2 Pooling helps learning
representations more robust to local distortions!



LOCAL CONTRAST NORMALIZATION
h
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LOCAL CONTRAST NORMALIZATION

h _hz',x,y_mz',N(x,y)
i+1,x,y

O-z',N(x,y)
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L2 Pooling & Local Contrast Normalization
help learning more invariant representations!



from Quiroga et al. "Invariant visual representation by single
neurons in the human brain” Nature 2005

"Here we report on a remarkable subset of MTL neurons
that are selectively activated by strikingly different
pictures of given individuals, landmarks or objects and in
some cases even by letter strings with their names.”

Halle Berry heuron
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Unsupervised Learning With 1B Parameters

DATA: 10M youtube (unlabeled) frames of size 200x200.

9
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Unsupervised Learning With 1B Parameters

Deep Net:

- 3 stages

- each stage consists of local filtering, L2 pooling, LCN
- 18x18 filters

- 8 filters at each location
- L2 pooling and LCN over 5x5 neighborhoods

- training jointly the three layers by:
- reconstructing the input of each layer
- sparsity on the code

Le et al. "Building high-level features using large-scale unsupervised learning” ICML 2012 Ranzato "’



Unsupervised Learning With 1B Parameters

One stage (zoom)

Whole system

Input
Image
—_—

1st stage 2nd stage 3'd stage

Ranzato =4



Validating Unsupervised Learning

The network has seen lots of objects during training, but
without any label.

Q.: how can we validate unsupervised learning?

Q.: Did the network form any high-level representation?
E.g., does it have any neuron responding for faces?

- build validation set with 50% faces, 50% random images
- study properties of neurons

Ranzato *§



Validating Unsupervised Learning
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Top Images For Best Face Neuron




Best Input For Face Neuron

il

™ = argmin f(x; W, H), subject to |[|z]|l2 =1
I
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Invariance Properties
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feature response
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Cat Neuron
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Top Images for Cat Neuron




Object Recognition on ImageNet

IMAGENET v.2011 (16M images, 20K categories)

METHOD ACCURACY %
Weston & Bengio 2011 9.3

Linear Classifier on deep features 13.1

Deep Net (from random) 13.6

Deep Net (from unsup.) 15.8

Ranzato *§



Dropout



Visual Object Classes Challenge 2012 (VOC2012)

PASCALZ

rn Analysis, Statistical Mode ng ano
( omputational Learning

 Classification: For 20 classes, predict presence/absence of an example of that class

in the test image.
» Detection: Predict the bounding box and label of each object from the 20 target

classes in the test image.

Person: person

Animal: bird, cat, cow, dog, horse, sheep

\ehicle: aeroplane, bicycle, boat, bus, car, motorbike, train
Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor



Team name
SuperVision

SuperVision

ISI

ISI
ISI

ISI

OXFORD_VGG

XRCE/INRIA

OXFORD_VGG

OXFORD_VGG

University of Amsterdam

XRCE/INRIA
LEAR-XRCE
LEAR-XRCE
LEAR-XRCE
LEAR-XRCE

Error (5 guesses)
0.15315
0.16422

0.26172

0.26602
0.26646

0.26952

0.26979

0.27058

0.27079

0.27302
0.29576
0.33419
0.34464
0.36184
0.38006
0.41048

Description
Using extra training data from ImageNet Fall 2011 release

Using only supplied training data

Weighted sum of scores from each classifier with SIFT+FV, LBP+FV, GIST+FV,
and CSIFT+FV, respectively.

Weighted sum of scores from classifiers using each FV.

Naive sum of scores from classifiers using each FV.

Naive sum of scores from each classifier with SIFT+FV, LBP+FV, GIST+FV, and
CSIFT+FV, respectively.

Mixed selection from High-Level SVM scores and Baseline Scores, decision is
performed by looking at the validation performance

High-Level SVM over Fine Level Classification score, DPM score and Baseline
Classification scores (Fisher Vectors over Dense SIFT and Color Statistics)

Baseline: SVM trained on Fisher Vectors over Dense SIFT and Color Statistics

See text above

Trained on ILSVRC'12 - using a mixture of NCM classifiers
Trained on ILSVRC'12 - using NCM
Trained on ILSVRC'10 - using a mixture of NCM classifiers
Trained on ILSVRC'10 - using NCM



Team name

SuperVision

SuperVision

OXFORD_VGG

OXFORD_VGG

OXFORD_VGG

OXFORD_VGG

ISI

ISI

Error (5 guesses)

0.335463

0.341905

0.500342

0.50139

0.522189

0.529482

0.536474

0.536546

Description

Using extra training data for classification from ImageNet Fall 2011 release

Using only supplied training data

Re-ranked DPM detection over Mixed selection from High-Level SVM scores and
Baseline Scores, decision is performed by looking at the validation performance

Re-ranked DPM detection over High-Level SVM Scores

Re-ranked DPM detection over High-Level SVM Scores - First bbox selection heuristic

DPM detection over baseline classification scores

We use the cascade object detection with deformable part models, restricting the sizes
of bounding boxes.

We use the cascade object detection with deformable part models, restricting the sizes
of bounding boxes.



Averaging many models

« To win a machine learning competition (e.g. Netflix)
you need to use many different types of model and
then combine them to make predictions at test time.

» Decision trees are not very powerful models, but
they are easy to fit to data and very fast at test time.

— Averaging many decision trees works really well.
lts called random forests. Kinect uses this.

— We make the individual trees different by giving
them different training sets. That’s called bagging

Hinton



Two ways to average models

« Mixture: We can combine models by taking the
arithmetic means of their output probabilities:

ModelA: .3 .2 .5
ModelB: .1 .8 .1

Combined 2 5 .3

* Product: We can combine models by taking the
geometric means of their output probabilities:

ModelA: 3 2 5
ModelB: .1 .8 .1

Combinedv.03 V.16 V.05 /sum

Hinton




Dropout: An efficient way to average
many large neural nets.

« Consider a neural net with
one hidden layer.

 Each time we present a

training example, we

randomly omit each hidden

unit with probability 0.5. OROOORARO
 So we are randomly

sampling from 2*H J[

different architectures.

— All architectures share
weights.

Hinton



Dropout as a form of model averaging

« We sample from 2*"H models. So only a few of
the models ever get trained, and they only get
one training example.

— This Is as extreme as bagging can get.

» The sharing of the weights means that every
model is very strongly regularized.

— It's @ much better regularizer than L2 or L1
penalties that pull the weights towards zero.

Hinton



Why it works: Preventing co-adaptation
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But what do we do at test time?

« We could sample many different architectures
and take the geometric mean of their output
distributions.

|t better to use all of the hidden units, but to
halve their outgoing weights.

— This exactly computes the geometric mean of
the predictions of all 2*"H models.



Classification Error %
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Test Error

15 frames 3 layers 2000 units
15 frames 3 layers 4000 units

31 frames 3 layers 4000 units ||
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Next lecture

In the next lecture, we will learn about MCMC and how to apply
It to perform Bayesian inference in Neural Networks.



