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1 Regularized linear regression

1.1 Data standardization

The goal of standardization is to make the d input attributes of the data comparable. If we were predicting
the price or real estate in Vancouver using as input attributes the number of rooms and the price of the
property 3 years ago (d = 2), then we would run into trouble because the number of rooms is typically in
the range 1 to 4, while the price 3 years ago is probably in the range 500,000 to 5,000,000. We need to place
these two attributes on the same scale so that applying the same regularizer to their weights makes sense.

To achieve this, we standardize the input data by ensuring it has zero mean and unit variance. We can
do this by computing

xij =
xij − xj
σj

, (1)

where xj = 1
n

∑n
i=1 xij is the empirical mean of the j’th attribute, and σ2

j = 1
n

∑n
i=1(xij − xj)

2 is the
empirical variance. Here, i = 1, . . . , n denotes the index over the data and j = 1, . . . , d is the index over
input attributes.

The subtraction of the mean is not necessary for datasets that are already known to be zero mean, such
as acoustic time series. Likewise, for gray-scale images we know that each attribute (pixel) has the same
range of possible values, so we can skip the variance normalization. If the attributes do not have the same
range of values, then the variance rescaling can prove to be very useful. For example if the first attribute is
the number of people who entered a building, the second attribute the temperature of the building, and the
third attribute the number of rooms in the building, then these three numbers are likely not to be in the
same scale. Variance rescaling places them on a reasonable comparative scale.

The parameters xj and σ2
j should be considered part of the model. So at test time, we should center

with respect to xj and scale with respect to σj , rather than centering and scaling the test set with respect
to the mean and standard deviation of the test set. To see why, imagine the test set consisted of a single
example; then scaling by the test set standard deviation, instead of the value derived from the training set,
would clearly be wrong, since the standard deviation of a single data point is not defined. All this will be
made more clear in the following section.

1.2 Load and standardize the data

Download the prostate cancer dataset from the course website. In this prostate cancer study 9 variables –
including age, log weight, log cancer volume, etc. – were measured for 97 patients. We will now construct a
model to predict the 9th variable a linear combination of the other 8. A description of this dataset appears
in the textbook of Hastie et al, freely available on the course website:

“The data for this example come from a study by Stamey et al. (1989) that examined the correlation
between the level of prostate specific antigen (PSA) and a number of clinical measures, in 97 men who were
about to receive a radical prostatectomy. The goal is to predict the log of PSA (lpsa) from a number of
measurements including log cancer volume (lcavol), log prostate weight lweight, age, log of benign prostatic



hyperplasia amount lbph, seminal vesicle invasion svi, log of capsular penetration lcp, Gleason score gleason,
and percent of Gleason scores 4 or 5 pgg45. ”

1. First load the data and split it into a response vector (y) and a matrix of attributes (X),

X = np.loadtxt(’prostate.data’, skiprows=1)

y = X[:,-1]

X = X[:,0:-1]

2. Choose the first 50 patients as the training data. The remaining patients will be the test data.

ytrain, ytest = y[0:50], y[50:]

Xtrain, Xtest = X[0:50], X[50:]

3. Set both variables to have zero mean and standardize the input variables to have unit variance.

Xbar = np.mean(Xtrain, axis=0)

Xstd = np.std(Xtrain, axis=0)

ybar = np.mean(ytrain)

ytrain = ytrain - ybar

Xtrain = (Xtrain - Xbar) / Xstd

Note: here we are using the “broadcasting” feature of numpy, which allows summation of a vector and
a matrix. For example:

>>> a

array([[1, 2, 3],

[4, 5, 6]])

>>> c

array([7, 8, 9])

>>> a+c

array([[ 8, 10, 12],

[11, 13, 15]])

You will have to be careful when you do this in numpy in order to make the shapes match up as they
should. For more details on how to do this properly look up “numpy broadcasting”.

Important detail: In the training step, we will learn the bias θ0 separately. We do this because it
makes not sense to apply regularization to the bias θ0. Recall that the purpose of regularization is to
get rid of unwanted input attributes.

We will need the terms (Xbar, Xstd, ybar) when we do predictions. Mathematically, what we are
saying is that the bias term will be computed separately as follows:

θ0 = ȳ − x̄T θ̂

where ȳ is the mean of the elements of the training data vector y and x̄T is the vector of 8 means
for the input attributes. Note that in this case the 8-dimensional parameter vector θ̂ includes all the
parameters other than the bias term that have been learned with ridge regression. That is, we first
learn θ̂ using standardized data and then proceed to learn θ0.

When we encounter a new input x? in the test set, we need to standardize it before making a prediction.
The actual prediction should be:

ŷ = ȳ +

8∑
j=1

x?j − x̄j
σj

θ̂j
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Figure 1: Regularization path for ridge regression.

where x̄j and σj are the mean and standard deviation of the j-th attribute obtained from the
training data.

One reason for standardizing the inputs is that we want them to be comparable. Had we had an
input much bigger than the other, we would have wanted to apply a different regularizer to it. By
standardizing the inputs first, we only need a single scalar regularization coefficient δ2.

1.3 Ridge regression

We will now construct a model using ridge regression to predict the 9th variable as a linear combination of
the other 8.

1. Write code for ridge regression starting from the following skeleton:

def ridge(X, y, d2):

???

return theta

Compute the ridge regression solutions for a range of regularizers (δ2). Plot the values of each θ in the
y-axis against δ2 in the x-axis. This set of plotted values is known as a regularization path. Your plot
should look like Figure 1. Hand in your version of this plot, along with the code you used to generate
it.

2. For each computed value of θ, compute the train and test error. Remember, you will have to standardize
your test data with the same means and standard deviations as above (Xbar, Xstd, ybar) before you
can make a prediction and compute your test error. In other words, to make a prediction do:

yhat = ybar + numpy.dot((Xtest - Xbar) / Xstd, theta)
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Figure 2: Relative error of the ridge estimator against regularization parameter δ2.

Choose a value of δ2 using cross-validation. What is this value? Show all your intermediate cross-
validation steps and the criterion you used to choose δ2. Plot the train and test errors as a function of
δ2. Your plot should look like Figure 2. Hand in your version of this plot, along with the code used to
generate it.



2 Bayesian Linear Regression

Let X ∈ Rn×d and y ∈ Rn×1. Assume the likelihood is Gaussian:

p(y|X,θ,Σ) = |2πΣ|−1/2e− 1
2 (y−Xθ)T Σ−1(y−Xθ).

Assume that the prior for θ is also Gaussian:

p(θ) = |2π∆|−1/2e− 1
2θ

T ∆−1θ.

1. Using Bayes rule and completing squares, derive an expression for the posterior distribution of θ. In
this part, assume that the covariance Σ is given. State clearly what the mean and variance of the
posterior are. Also, state the conditions under which the posterior mean would be equivalent to the
ridge and maximum likelihood estimators.



2. Derive an analytical, closed-form expression for the maximum likelihood estimate of Σ. You will need
the following properties of matrix derivatives (for a symmetric matrix A):

∂ log |A|
∂A

= A−1 and
∂trace(xTAx)

∂A
= xxT

Hint: Take derivatives of the log-likelihood with respect to Σ−1.

3. Given an inverse Wishart prior (Wikipedia has a nice description of the inverse Wishart distribution!)
on Σ, with fixed known parameters α and Σ∗,

p(Σ|α,Σ∗) ∝ |Σ|−(α+n+1)/2e−
1
2 trace(Σ

∗Σ−1),

show by conjugate analyisis that the posterior distribution of Σ is also an inverse Wishart distribution.
What are the new parameters of the posterior? Hint: trace(zTAz) = trace(zzTA). Note that
E(Σ) = Σ∗

α−n−1 . Hence, under which conditions are the maximum likelihood and posterior mean
estimates equivalent?



3 Dual Form of Ridge Regression

The ridge method is a regularized version of least squares

min
θ∈Rd

‖y −Xθ‖22 + δ2‖θ‖22

where the input matrix X ∈ Rn×d and the output vector y ∈ Rn. The solution is obtained by differentiating
the above cost function:

(XTX + δ2Id)θ = XTy

where Id is the d× d identity matrix and δ is a scalar.

1. Show that the solution can be written as θ = XTα, where α = δ−2(y −Xθ).

2. Show that α can also be written as follows: α = (XXT + δ2In)−1y. (This is an awesome trick because
if n = 20 patients with d = 10, 000 gene measurements, the computation of α only requires inverting
the n×n matrix, while the direct computation of θ would have required the inversion of a d×d matrix.)



4 Collaborative Filtering for Movie Recommendation

This exercise is based on the Netflix Competition. The goal is to recommend movies to users based on
their votes. Here we will derive a key technique by the guys who won the million dollar prize. Note that
although we are focusing on movies here, we could use this technique for recommending any items in a social
network. Finally, we don’t get to implement the technique yet in this homework, but we will do so in the
next homework. The actual reference is:

Yifan Hu, Yehuda Koren and Chris Volinsky. Collaborative Filtering for Implicit Feedback Datasets.
IEEE International Conference on Data Mining, pages 263–272, 2008.

We assume that user u has indicated preference for item i via the variable pui ∈ {0, 1}, where u = 1, . . . ,m
and i = 1, . . . , n. For example, a 1 could mean that the user gave the item a thumbs up. These votes are
part of a matrix P ∈ Rm×n that has many missing entries. (The machine learning method here will take
care of filling in the missing entries!).

Yifan Hu and collaborators applied this technique to movies, where users provide ratings rui in the form
of stars. They convert these ratings to our preference variables as follows:

pui =

{
1 rui > 0
0 rui = 0,

and rui is the vote of user u for item i.
We also assume that we have an additional confidence signal cui that measures the extent of the interaction

(attraction, etc.) of user u to item i. For example if user u gives a movie i a thumbs up and finishes watching
it; or if the user is an expert in the genre of the movie, we would use a large value of cui. Yifan Hu use cui
as the “confidence” of user u on item i:

cui = 1 + αrui,

where α is a parameter, which is set to 40 in the original paper.
Given n movies, our first objective will be to learn a matrix of factors Y ∈ Rf×n for these movies. That

is, each movie will be described by a column vector yi ∈ Rf×1 of f factors (features). Our second objective
will be to learn a matrix of factors for the m users of the social network X ∈ Rm×f . Each user will be
described by a row vector of factors xu ∈ R1×f .

Since we have two unknowns, the method of solution will be alternating ridge regression. That is, we
first fix Y and solve for X, use this estimate of X and solve for Y, use the latest estimate of Y and solve
for X again, etc.

To compute the factors for each user, we assume the yi are given, and proceed to minimize the following
quadratic cost function:

J(xu) =

n∑
i=1

cui(pui − xuyi)
2 + λ‖xu‖22 for each user u.

This is known as a weighted ridge regression problem.



1. For each user, assume we construct the diagonal matrix Cu ∈ Rn×n with diagonal entries cui. Let
pu ∈ R1×n denote the vector of preferences for user u. Show that the above weighted ridge regression
objective can be re-written in matrix format as follows:

J(xu) = (pu − xuY)Cu(pu − xuY)T + λxux
T
u

2. What is the solution x̂u to the above objective?
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