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• The pdf of the MVN is defined as

N (x|µ,Σ) :=
1

(2π)D/2|Σ|1/2
× exp[−

1

2
(x− µ)TΣ−1(x− µ)]

where D is the dimensionality of x, µ = E [X] is the mean, and Σ =
cov [X] is the covariance matrix.

• The normalization constant 1/(|2πΣ|1/2) ensures that the pdf integrates
to 1.



Bivariate Gaussian
• If D = 2, the MVN becomes the bivariate Gaussian. In this case, the

covariance matrix can be written in the form

Σ =

(
σ21 ρσ1σ2
ρσ1σ2 σ22

)

where ρ is the correlation coefficient.

• The pdf of the bivariate Gaussian is as follows:•

p(x1, x2) =
1

2πσ1σ2
√

1− ρ2
exp

(
−

1

2(1− ρ2)

(
(x1 − µ1)

2

σ21
+

(x2 − µ2)
2

σ22

−2ρ
(x1 − µ1)

σ1

(x2 − µ2)

σ2

))





Cholesky decomposition
• Since Σ is symmetric positive definite, we can compute its Cholesky
decomposition, RTR = Σ, where R is upper triangular.

• Suppose we know how to sample from a standard normal. Then we can
easily sample from N (0, I). To sample from N (µ,Σ), first sample z ∼
N (0, I). Now let x = µ+RTz. It is easy to see that x ∼ N (µ,Σ). This
is a widely used trick.

• To evaluate the pdf of a Gaussian, we need to compute Σ−1 and |Σ|• To evaluate the pdf of a Gaussian, we need to compute Σ−1 and |Σ|
efficiently. If we have already computed the Cholesky decomposition, we
can write Σ−1 = R−1R−T ; this is efficient to evaluate since R is upper
triangular. For the determinant, we can use the following result:

|Σ| =
D∏

j=1

R2jj



Information parameterization
• Suppose x ∼ N (µ,Σ). One can show that E [x] = µ is the mean vector,

and cov [x] = Σ is the covariance matrix. These are called the moment
parameters of the distribution. However, it is sometimes useful to use
the canonical parameters or natural parameters, defined as

Λ := Σ−1, ξ := Σ−1µ

• We can convert back to the moment parameters using• We can convert back to the moment parameters using

µ = Λ−1ξ, Σ = Λ−1

• Using the canonical parameters, we can write the MVN in information
form (i.e., in exponential family form:

N (x|ξ,Λ) = (2π)−D/2|Λ|
1

2 exp[−
1

2
(xTΛx+ ξTΛ−1ξ − 2xT ξ)]



Inference
• Probabilistic inference refers to deriving unknown quantities from known

quantities under uncertainty.

• Suppose we have a vector of correlated random variables with joint distri-
bution p(x1:D|θ).

• Let us partition this vector into the visible variables xv, which are
observed, and the hidden variables, xh, which are unobserved.

• Inference refers to computing the posterior distribution of the unknowns
given the knowns:

p(xh|xv, θ) =
p(xh,xv|θ)

p(xv|θ)
=

p(xh,xv|θ)∫
p(x′h,xv|θ)dx

′
h



Inference
• It is clear that the key operations we need to be able to implement are

1. conditioning on data, i.e., going from p(xh,xv) to p(xh|xv), which
essentially “clamps” the visible variables to their observed values, xv.

2. marginalizing out, i.e., going from p(xh,xv) to p(xv).

• Sometimes only some of the hidden variables are of interest to us. So let
us partition the hidden variables into query variables, xq, whose valueus partition the hidden variables into query variables, xq, whose value
we wish to know, and the remaining nuisance variables, xr, which we
are not interested in.

• We can compute what we are interested in by marginalizing out the nui-
sance variables:

p(xq|xv, θ) =

∫
p(xq,xr|xv, θ)dxr



Gaussian inference: Main result
• Suppose x = (x1,x2) is jointly Gaussian with parameters

µ =

(
µ1
µ2

)
, Σ =

(
Σ11 Σ12
Σ21 Σ22

)

We will show that the marginal distribution for p(x2) is obtained by ex-
tracting the rows and columns from µ and Σ corresponding to x2:

N |p(x2) = N (x2|µ2,Σ22)

We will also show that the conditional distribution p(x1|x2) is given by

p(x1|x2) = N (x1|µ1|2,Σ1|2)

µ1|2 = µ1 +Σ12Σ
−1
22 (x2 − µ2)

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21



Schur complement
•

Theorem 0.1. Consider a general partitioned matrix

M =

(
E F

G H

)

where we assume E and H are invertible. We have

M−1 =

(
(M/H)−1 −(M/H)−1FH−1

− −1 −1 −1 −1 −1 −1

)
M− =

(
−

−H−1G(M/H)−1 H−1 +H−1G(M/H)−1FH−1

)

=

(
E−1 +E−1F(M/E)−1GE−1 −E−1F(M/E)−1

−(M/E)−1GE−1 (M/E)−1

)

where

M/H := E− FH−1G

M/E := H−GE−1F

We say that M/H is the Schur complement of M wrt H.



Schur complement

• The proof is left as an exercise. An important intermmediate result is:

(
E F

G H

)−1
=

(
I 0

−H−1G I

)(
(M/H)−1 0

0 H−1

)(
I −FH−1

0 I

)(

G H

) (

−H− G I

)(

0 H−

)(

0 I

)







• Equating matrix terms, we get:

(M/H)−1 = E−1 + E−1F(M/E)−1GE−1

Plugging in the definition of Schur complement leads to the widely used
matrix inversion lemma or the Sherman-Morrison-Woodbury for-
mula:

Sherman-Morrison-Woodbury

(E− FH−1G)−1 = E−1 + E−1F(H−GE−1F)−1GE−1

• In the special case that H = −1 (a scalar), F = u (a column vector), and
G = vT (a row vector),k on we get the following formula for the rank
one update of an inverse matrix

(E+ uvT )−1 = E−1 +E−1u(−1− vTE−1u)−1vTE−1

= E−1 −
E−1uvTE−1

1 + vTE−1u



• Equating matrix terms, we also get:

(E− FH−1G)−1FH−1 = E−1F(H−GE−1F)−1

• From the proof of the Schur complement, one can derive the following
matrix determinant lemma

Matrix determinant lemma

•
matrix determinant lemma

|E− FH−1G| = |H−GE−1F||H−1||E|



Gaussian inference: Proof
• We factor the joint p(x1,x2) as p(x2)p(x1|x2) using the Schur complement.

First, we deal with the exponent:

exp

{

−
1

2

(
x1 − µ1
x2 − µ2

)T (
Σ11 Σ12
Σ21 Σ22

)−1 (
x1 − µ1
x2 − µ2

)}

= exp

{

−
1

2

(
x1 − µ1
x2 − µ2

)T (
I 0

−Σ−122 Σ21 I

)(
(Σ/Σ22)

−1 0

0 Σ−122

)(
I −Σ12Σ

−1
22

0 I

)(
x1 − µ1
x2 − µ2

)}

= exp

{
−

1

2
(x1 − µ1 −Σ12Σ

−1
22 (x2 − µ2))

T (Σ/Σ22)
−1(x1 − µ1 −Σ12Σ

−1
22 (x2 − µ2))

}

{ }

{ }

× exp

{
−

1

2
(x2 − µ2)

TΣ−122 (x2 − µ2)

}

This is of the form

exp(quadratic form in x1,x2)× exp(quadratic form in x2)





Gaussian inference: Proof
• Using the matrix determinant lemma, we can also split up the normaliza-

tion constants

(2π)(d1+d2)/2|Σ|
1

2 = (2π)(d1+d2)/2(|Σ/Σ22||Σ22|)
1

2

= (2π)d1/2|Σ/Σ22|
1

2 (2π)d2/2|Σ22|
1

2

where d1 = |x1| and d2 = |x2|.

•• Hence we have successfully factorized the joint as

p(x1,x2) = p(x2)p(x1|x2)

= N (x2|µ2,Σ22)N (x1|µ1|2,Σ1|2)

where the parameters of the conditional distribution can be read off from
the above equations using

µ1|2 = µ1 +Σ12Σ
−1
22 (x2 − µ2)

Σ1|2 = (Σ/Σ22) = Σ11 −Σ12Σ
−1
22 Σ21



Gaussian inference: Information form

• Recall

N (x|ξ,Λ) = (2π)−D/2|Λ|
1

2 exp[−
1

2
(xTΛx+ ξTΛ−1ξ − 2xT ξ)]

• It is also possible to derive the marginalization and conditioning formulas
in information form, yielding:

p(x2) = N (x2|ξ2 −Λ21Λ
−1
11 ξ1,Λ22 −Λ21Λ

−1
11 Λ12)

p(x2|x1) = N (x2|ξ1 −Λ12x2,Λ11)

• We see that marginalization is easier in moment form, and conditioning is
easier in information form.



Linear-Gaussian systems: Prior & observation model

• Suppose we have two variables, x and y.

• Let x ∈ RDx be a hidden variable, and y ∈ RDy be a noisy observation of
x.

• Let us assume we hav the following prior and likelihood:

p(x) = N (x|µx,Σx)

p(y|x) = N (y|Ax+ b,Σ )

N |

p(y|x) = N (y|Ax+ b,Σy)

where A is a matrix of size Dy ×Dx.

• This is an example of a linear Gaussian system. Understanding these
models will enable us to easily derive Gaussian processes for nonlinear
regression, classification and dimensionaly reduction; Kalman filtering and
factor analysis.



Linear-Gaussian systems: Joint & posterior
• Let z = (x,y)T . Then,

p(z) = N (z|µz,Σz)

µz =

(
µx

Aµx + b

)

Σz =

(
Σx ΣxA

T

AΣx Σy +AΣxA
T

)

• So we see that linear Gaussian systems are just a way to create large
jointly Gaussian distributions.

• The conditional distribution of x given y is given by the following Gaussian
distribution (so the Gaussian is conjugate to itself):

p(x|y) =
p(y|x)p(x)

p(y)
= N (x|µx|y,Σx|y)

Σ−1x|y = Σ−1x +ATΣ−1y A

µx|y = Σx|y[A
TΣ−1y (y − b) +Σ−1x µx]







Linear-Gaussian systems: Convolution
• The normalization constant is given by the following equation, which we

will call the Gaussian marginal likelihood equation:

p(y) =

∫
N (y|Ax+ b,Σy)N (x|µx,Σx)dx = N (y|Aµx + b,Σy +AΣxA

T )

• Another useful result is the following expression for the expected value of
the log of a Gaussian:the log of a Gaussian:

∫
logN (y|Ax,Σy)N (x|µx,Σx)dx = −

D

2
log(2π)−

1

2
log |Σy|

−
1

2
(y −Aµx)

TΣ−1y (y −Aµx)−
1

2
tr(Σ−1y AΣxA

T )



Linear-Gaussian systems: Derivation
• Consider the linear Gaussian system

p(x) = N (x|µx,Λ
−1)

p(y|x) = N (y|Ax+ b,L−1)

Let z = (x,y) and consider the log of the joint distribution:

log p(x,y) = −
1

2
(x−µx)

TΛ(x−µx)−
1

2
(y−Ax−b)TL(y−Ax−b)+const−

2
− − −

2
− − − −

Since this is a quadratic form, we see that p(x,y) is a Gaussian.

• Expanding out the terms involving x and y (and ignoring constants) we
have

−
1

2
xT (Λ+ATLA)x−

1

2
yTLy +

1

2
yTLAx+

1

2
xTATLy

= −
1

2

(
x

y

)T (
Λ+ATLA −ATL

−LA L

)(
x

y

)
= −

1

2
zTΣ−1z



Linear-Gaussian systems: Derivation
• Using the Schur complement, we invert the information matrix Σ−1, to

get the covariance:

Σ =

(
Λ−1 Λ−1AT

AΛ−1 L−1 +AΛ−1AT

)

• The mean of the joint is given by•

E [z] = (E[x], E[Ax+ b]) = (µx,Aµx + b)

• Given the joint, we can easily write down the marginal p(y) by extracting
the appropriate rows and columns:

p(y) = N (y|E [y] , cov [y])

E [y] = Aµx + b

cov [y] = L−1 +AΛ−1AT



Linear-Gaussian systems: Derivation
• To compute the conditional p(x|y), we use the information form results:

Λx|y = Λxx = Λ+ATLA

Σx|y = Λ−1x|y = (Λ+ATLA)−1

µx|y = Λ−1x|yηx|y = Σx|y(ηx −Λxyy)

= Σx|y(Λxxµx +Λxyµy −Λxyy)
T − T T

−

= Σx|y((Λ+ATLA)µx −A
TL(Aµx + b) +ATLy)

= Σx|y(Λµx +ATL(y − b))



Bayesian linear regression
• We can use Bayes rule for Gaussians to infer the parameters of a linear

regression model. For simplicity, we will assume the noise variance σ2 is
known.

• So our goal is to compute p(w|D, σ2), where D = (xi, yi)
N
i=1.



Bayesian linear regression: Posterior

• The likelihood is a Gaussian, N (y|Xw, σ2IN ). The conjugate prior is also
a Gaussian, which we will denote by p(w) = N (w|w0,V0).

• Using Bayes rule for Gaussians, the posterior is given by

p(w|X,y, σ2) ∝ N (w|w0,V0)N (y|Xw, σ2IN ) = N (w|wN ,VN )

wN = VNV
−1
0 w0 +

1

σ2
VNX

Ty
σ2

V−1
N = V−1

0 +
1

σ2
XTX



Bayesian linear regression: Ridge regression

• Consider the special case where w0 = 0 and V0 = τ 20 Id, which is a spher-
ical Gaussian prior. Then the posterior mean reduces to

wN =
1

σ2
VNX

Ty =
1

σ2

(
1

τ20
Id +

1

σ2
XTX

)−1
XTy

=
(
λId +XTX

)−1
XTy=

(
λId +X X

)−
X y

where we have defined λ := σ2

τ2
0

. This is known as ridge regression.



Bayesian linear regression: Predicting
• The posterior predictive distribution at a test point x is:

p(y|x,D, σ2) =

∫
N (y|xTw, σ2)N (w|wN ,VN )dw

= N (y|xTwN , σ
2
N (x))

σ2N (x) = σ2 + xTVNx

• The variance in this prediction, σ2 (x), depends on two terms: the ob-• The variance in this prediction, σ2N (x), depends on two terms: the ob-
servation noise with variance σ2, and the parameter uncertainty σ2N (x);
this latter term varies depending on how close x is to the training data
D. The error bars get larger as we move away from the training points,
representing increased uncertainty.

• By contrast, the plugin approximation has constant sized error bars, since

p(y|x,D, σ2) ≈

∫
N (y|xTw, σ2)δŵ(w)dw = p(y|xT ŵ, σ2)



Reading assignment
Please read on:

• MLE for the MVN

• Bayes for the MVN

• How to place Wishart priors on the covariance to derive the Bayesian
posterior distribution of the covariance matrix.
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