
CPSC540

Nando de Freitas
2011
KPM Book Sections: 4

Bayesian LearningBayesian LearningBayesian LearningBayesian Learning



Learning from positive examples
• Consider the problem of learning to understand the meaning of a word,

such as “dog”. Presumably, as a child, one’s parents point out positive
examples of this concept, saying such things as, “look at the cute dog!”,
or “mind the doggy”, etc.

• However, it is very unlikely that they provide negative examples, by
saying “look at that non-dog”.

• Certainly, negative examples may be obtained during an active learning• Certainly, negative examples may be obtained during an active learning
process – the child says “look at the dog” and the parent says “that’s a
cat, dear, not a dog” – but psychological research has shown that people
can learn concepts from positive examples alone.



The number game
• Consider a simple example of concept learning called the number game

(Josh Tenenbaum).

• Suppose I tell you I am thinking of some simple arithmetical concept C,
such as “prime number” or “an even number”.

• I give you a series of randomly chosen positive examples D = {x1, . . . , xn}
drawn from C.

• Then, ask you whether any other test cases x̃ belong to C (i.e., I ask you
to classify test examples x̃).



The number game
• Suppose, for simplicity, that all numbers are integers between 1 and 100.

• Suppose I tell you “16” is a positive example of the concept.

• What other numbers do you think are positive? 17? 6? 32? 99?

• 17 is similar, because it is “close by”, 6 is similar because it has a digit
in common, 32 is similar because it is also even and a power of 2, but 99
does not seem similar. Thus some numbers are more likely than others.does not seem similar. Thus some numbers are more likely than others.



Likelihood
• We must explain why we chose htwo :=“powers of two”, and not, say,

heven := “even numbers” after seeing D = {16, 8, 2, 64}, given that both
hypotheses are consistent with the evidence.

• The key intuition is that we want to avoid suspicious coincidences. If
the true concept was even numbers, how come we only saw numbers that
happened to be powers of two?

• To formalize this, let us assume that examples are sampled uniformly• To formalize this, let us assume that examples are sampled uniformly
at random from the extension of a concept. (The extension of a con-
cept is just the set of numbers that belong to it, e.g., the extension of
heven is {2, 4, 6, . . . , 98, 100}; the extension of “numbers ending in 9” is
{9, 19, . . . , 99}.) Tenenbaum calls this the strong sampling assump-
tion.



Likelihood
• Given the previous assumption, the probability of independently sampling

n items (with replacement) from h is given by

p(D|h) =

[
1

size(h)

]n
=

[
1

|h|

]n

• This crucial equation embodies what Tenenbaum calls the size principle,
which means the model favors the simplest (smallest) hypothesis consis-
tent with the data; this is of course the same as Occam’s razor.

• To see how it works, let D = {16}. Then p(D|htwo) = 1/6, since there are
only 6 powers of two less than 100, but p(D|heven) = 1/50, since there are
50 even numbers.

• So the likelihood that h = htwo is higher than if h = heven. After 4 exam-
ples, the likelihood of htwo is 1/64 = 7.7× 10−4, whereas the likelihood of
heven is 1/504 = 1.6× 10−7.

• This is a likelihood ratio of almost 5000:1 in favor of heven.



Priors
• Suppose D = {16, 8, 2, 64}. The concept h′ =“powers of two except 32” is

more likely than h =“powers of two”.

• h′ is the maximum likelihood estimate, since this is the smallest hypothesis
consistent with the data.

• However, h′ might seem “conceptually unnatural”. We can capture such
intuition by assigning low prior probability to unnatural concepts.

• Of course, your prior might be different than mine. This subjective
aspect of Bayesian reasoning is a source of much controversy, since it
means, for example, that a child and a math professor will reach different
answers.



Posterior

• The posterior is simply the likelihood times the prior, normalized:

p(h|D) =
p(D|h)p(h)∑
h′∈H p(D, h′)

=
p(h)I(D ∈ h)/|h|n∑

h′∈H p(h′)I(D ∈ h′)/|h′|n

• For illustration, we use a simple prior which puts support on 30 simple• For illustration, we use a simple prior which puts support on 30 simple
arithmetical concepts, such as “even numbers”, “numbers ending in 9”,
etc.

• We include two “unnatural” concepts, namely “powers of 2, plus 37” and
“powers of 2, except 32”, but give them low prior weight.



Bayesian updating



Posterior predictive distribution
• The posterior is our internal belief state about the world.

• The way to test if our beliefs are justified is to use this to predict observable
quantities.

• Specifically, the posterior predictive distribution of, say 42, in this
context is given by

p(y = 42|D) =
∑

p(y = 42|h)p(h|D)p(y = 42|D) =
∑

h

p(y = 42|h)p(h|D)

This is just a weighted average of the predictions of each individual
hypothesis.



Posterior predictive distribution
• If

p(h|D) ≈ δ
ĥ
(h),

by the sifting property of delta functions the predictive distribution be-
comes

p(y = 42|D) =
∑

h

p(y = 42|h)δ
ĥ
(h) = p(y = 42|ĥ)

• This is called a plugin approximation to the predictive density and is•
very widely used, due to its simplicity.

• But note that it can lead to disastrous predictions.



Posterior predictive distribution
• The posterior is our internal belief state about the world.

• The way to test if our beliefs are justified is to use this to predict observable
quantities.

• Specifically, the posterior predictive distribution in this context is
given by

p(y = 1|x̃,D) =
∑

p(y = 1|x̃, h)p(h|D)| D
∑

h

| |D

This is just a weighted average of the predictions of each individual
hypothesis.



Conjugate Bayesian analysis

• We will focus on the use of a special kind of prior known as a conjugate
prior. We say a prior p(θ) ∈ F is conjugate to a likelihood p(D|θ) if the
resulting posterior p(θ|D) is also in F .

Likelihood Prior
Binomial/ Bernoulli Beta
Multinomial/ multinoulli Dirichlet
Poisson Gamma
MVN (fixed Σ) MVN
MVN (fixed µ) Wishart
MVN (general case) MVN-Wishart
Exponential family Conjugate



Beta-Bernoulli

• Suppose Xi ∼ Ber(θ), so Xi ∈ {0, 1}. We know that the likelihood has
the form

p(D|θ) = θN1(1− θ)N0

where we have N1 =
∑N

i=1 I(xi = 1) heads and N0 =
∑N

i=1 I(xi = 0) tails.



Beta-Bernoulli
• The conjugate prior must be defined over [0, 1] and have the form p(θ) ∝

θsome power(1− θ)some power.

• Fortunately, there is such a distribution, known as beta distribution.
Its pdf is defined as follows:

Beta(θ|α1, α2) =
1

B(α1, α2)
θα1−1(1− θ)α2−1

Γ(a)Γ(b)Here B(p, q) is the beta function: B(a, b) := Γ(a)Γ(b)
Γ(a+b) .



Beta-Bernoulli

• We require α2 > 0 and α1 > 0 to ensure the distribution is integrable (i.e.,
to ensure B(α1, α2) exists).

• The distribution has the following properties:

mean =
α1

α1 + α2
, mode =

α1 − 1

α1 + α2 − 2
, Var =

α1α2
(α1 + α2)2(α1 + α2 + 1)

• The parameters of the prior are called hyper-parameters. We can set
them in order to encode our prior beliefs.



What is the posterior?



Beta-Bernoulli
• If we multiply the Bernoulli likelihood by the beta prior we get

p(θ|D) ∝ p(D|θ)p(θ)

∝ [θN1(1− θ)N2 ][θα1−1(1− θ)α2−1]

= θN1+α1−1(1− θ)N2+α2−1

∝ Beta(θ|N1 + α1, N2 + α2)

• We see that the posterior has the same functional form (beta) as the prior
(beta), since it is conjugate.

• The posterior is obtained by adding the prior hyper-parameters αk to the
empirical counts Nk. For this reason, the αk hyper-parameters are known
as pseudo counts. The strength of the prior, also known as the effective
sample size of the prior, is the sum of the pseudo counts, α1 + α2; this
plays a role analogous to the data set size, N1 + N2 = N .



Beta-Bernoulli
• Updating the posterior sequentially is equivalent to updating in a single

batch.

• Suppose we have two data sets D1 and D2 with sufficient statistics Na
1 , Na

2

and N b
1 , N

b
2 . Let N1 = Na

1 + Nb
1 , N2 = Na

2 + N b
2 and N = N1 + N2.

• In batch mode we have

p(θ|D1,D2) ∝ Bin(θ|N1, N1 + N2)Beta(θ|α1, α2)|D D ∝ | |

∝ Beta(θ|N1 + α1, N2 + α2)

• In sequential mode, we have

p(θ|D1,D2) ∝ p(D2|θ)p(θ|D1)

∝ Bin(θ|N b
1 , N

b
1 + N b

2)Beta(θ|Na
1 + α1, N

a
2 + α2)

∝ Beta(θ| Na
1 + N b

1 + α1, N
a
2 + Nb

2 + α2)

• This makes Bayesian inference particularly well-suited to online learn-
ing, as we will see later.



Beta-Bernoulli
• The posterior mode, or MAP estimate, is given by

θ̂MAP =
α1 + N1 − 1

α1 + α2 + N − 2

• By contrast, the posterior mean is given by,

θ =
α1 + N1

α + α + N
θ =

α1 + α2 + N

• If we use a uniform prior, αk = 1, then the MAP estimate reduces to the
MLE, but the posterior mean estimate does not.



Beta-Bernoulli
• We will now show that the posterior mean is convex combination of

the prior mean and the MLE.

• Let the prior mean be m1 = α1/α0, where α0 = α1 + α2 controls the
strength of the prior.

• Then the posterior mean is

E [θ|D] =
α0m1 + N1

=
α0

m +
N N1

= λm + (1− λ)θ̂E [θ|D] =
α0m1 + N1

N + α0
=

α0
N + α0

m1 +
N

N + α0

N1

N
= λm1 + (1− λ)θ̂ML

where
λ =

α0
N + α0

is the ratio of the prior to posterior precision (sample size).



Beta-Bernoulli
• Consider predicting the probability of heads in a single future trial under

a Beta(α1, α2) posterior.

• We have

p(x̃ = 1|D) =

∫ 1

0

p(x = 1|θ)p(θ|D)dθ

=

∫ 1

0

θ Beta(θ|α1, α2)dθ = E [θ|D] =
α1

α1 + α2

∫

0

| |D
α1 + α2

• With a uniform prior, we have α1 = N1 + 1 and α2 = N2 + 1, which gives
Laplace’s rule of succession

p(x̃ = 1|D) =
N1 + 1

N1 + N2 + 2

This justifies the common practice of adding 1 to the empirical counts.



Beta-Binomial
• Suppose now we were interested in predicting the number of heads, x, in

M future trials. This is given by

p(x|D, M) =

∫ 1

0

Bin(x|θ,M)Beta(θ|α1, α2)dθ

=

(
M
x

)
1

B(α1, α2)

∫ 1

0

θx(1− θ)M−xθα1−1(1− θ)α2−1dθ

This simplifies to the beta-binomial distribution:This simplifies to the beta-binomial distribution:

Bb(x|α1, α2,M) :=

(
M
x

)
B(x + α1, M − x + α2)

B(α1, α2)

This distribution has the following mean and variance

E [x] = M
α1

α1 + α2

var [x] =
Mα1α2

(α1 + α2)2
(α1 + α2 + M)

α1 + α2 + 1



Dirichlet-Multinomial

• The likelihood has the form

p(D|θ) =
K∏

k=1

θNk

k

where Nk =
∑N

i=1 I(yi = k) is the number of times event k occured.



Dirichlet-Multinomial
• The conjugate prior is the Dirichlet distribution which is the natural

generalization of the beta distribution to multiple dimensions.

• The pdf is defined as follows:

Dir(θ|α) :=
1

B(α)

K∏

k=1

θαk−1k I(x ∈ SK)
∏

where SK is the K-dimensional probability simplex, which is the set of
vectors such that 0 ≤ θk ≤ 1 and

∑K

k=1 θk = 1.

• In addition, B(α1, . . . , αK) is the natural generalization of the beta func-
tion to K variables:

B(α) :=

∏K

i=1 Γ(αi)

Γ(α0)

where α0 :=
∑K

k=1 αk.



Dirichlet-Multinomial



Dirichlet-Multinomial



Dirichlet-Multinomial
• Multiplying the likelihood by the prior, we find that the posterior is also

Dirichlet:

p(θ|D) ∝ p(θ)p(D|θ)

∝
K∏

k=1

θαk−1k θNk

k =
K∏

k=1

θαk+Nk−1
k

= Dir(θ|α1 + N1, . . . , αK + NK)= Dir(θ|α1 + N1, . . . , αK + NK)

• We see that the posterior is obtained by adding the prior hyper-parameters
(pseudo-counts) αk to the empirical counts Nk.



Dirichlet-Multinomial
• The posterior predictive distribution for a categorical variable is given as

follows:

p(X = j|D) =

∫
p(X = j|θ)p(θ|D)dθ

=

∫
p(X = j|θj)

[∫
p(θ−j , θj|D)dθ−j

]
dθj

∫
E=

∫
θjp(θj |D)dθj = E [θj |D]

=
αj + Nj

N +
∑

k αk

where E[θj |D] is the j’th component of the posterior mean, and θ−j are
all the components of θ except θj .

• This expression avoids the zero-count problem.



Marginal likelihood (evidence)
• Let p(θ) = q(θ)/Z0 be our prior, where q(θ) is an unnormalized distribu-

tion, and Z0 is the normalization constant of the prior.

• Let p(D|θ) = q(D|θ)/Zℓ be the likelihood, where Zℓ contains any constant
factors in the likelihood.

• Finally let p(θ|D) = q(θ|D)/ZN be our posterior, where q(θ|D) = q(θ)q(D|θ)
is the unnormalized posterior, and ZN is the normalization constant of the
posterior.posterior.

• We have

p(θ|D) =
p(D|θ)p(θ)

p(D)

q(θ|D)

ZN
=

q(D|θ)q(θ)

ZℓZ0p(D)

p(D) =
ZN

Z0Zℓ



Marginal likelihood (evidence)
• Let us apply the above result to the Beta-Binomial model. Since we know

p(θ|D) = Beta(θ|α′1, α
′
2), where α′1 = α1+N1 and α′2 = α2+N2, we know

the normalization constant of the posterior is B(α′1, α
′
2). Hence

p(θ|D) =
p(θ)p(D|θ)

p(D)

=
1

p(D)

[
1

B(α , α )
θα1−1(1− θ)α2−1

] [(
N
N1

)
θN1(1− θ)N2

]

p(D)

[

B(α1, α2)
−

] [(

N1

)
−

]

=

(
N
N1

)
1

p(D)

1

B(α1, α2)

[
θα1+N1−1(1− θ)α2+N2−1

]

Hence

1

B(α1 + N1, α2 + N2)
=

(
N
N1

)
1

p(D)

1

B(α1, α2)

p(D) =

(
N
N1

)
B(α1 + N1, α2 + N2)

B(α1, α2)



Marginal likelihood (evidence)
• The marginal likelihood for the Dirichlet-Categorical model is given by

p(D) =
B(N+α)

B(α)

• From earlier, we have

B(α) =

∏K

k=1 Γ(αk)

Γ(
∑

αk)

∏

Γ(
∑

k αk)

• Hence we can rewrite the above result in the following form, which is what
is usually presented in the literature:

p(D) =
Γ(
∑

k αk)

Γ(N +
∑

k αk)

∏

k

Γ(Nk + αk)

Γ(αk)



Bayesian model selection / hypothesis testing

• Suppose we have a set of models M and we want to know which one is
the best. The most natural approach is to compute

m∗ = arg max
m∈M

p(m|D)

This is called Bayesian model selection.

• Suppose our prior on models is uniform, p(m) ∝ 1. Then model selection• ∝
is equivalent to picking the model with the highest marginal likelihood,
arg max p(D|m).



Bayesian model selection / hypothesis testing

• Now suppose we just have two models we are considering, call them the
null hypothesis, M0, and the alternative hypothesis, M1.

• Define the Bayes factor as the ratio of marginal likelihoods:

BF1,0 :=
p(D|M1)

p(D|M0)
=

p(M1|D)

p(M0|D)
/
p(M1)

p(M0)

• This is like a likelihood ratio, except we integrate out the parameters,
which allows us to compare models of different complexity.

• If BF1,0 > 1 then we prefer model 1, otherwise we prefer model 0.



Model selection
• The obvious approach to picking from a set M of possible models (also

known as the hypothesis space) is to fit each one to data (i.e., compute

θ̂m), and then pick the one that fits the best:

m∗ = arg max
m∈M

p(D|θ̂m)

• Unfortunately this will not work, since it will always pick the most complex
model.

• To see why, note that a model with more parameters has more “capacity”
to memorize the training data, and hence can achieve a higher likelihood.
However, complex models overfit.



Cross-validation

• A simple fix to the problem is to fit the model on the training set, but to
evaluate it on the test set, since we have already seen that models that are
too simple or too complex predict poorly on the test set (the U-shaped
curve). But how to get a test set?

• A simple but popular solution to this is to use cross validation (CV).• A simple but popular solution to this is to use cross validation (CV).

• The idea is simple: we split the training data into K folds; then, for each
fold k ∈ {1, . . . , K}, we train on all the folds but the k’th, and test on the
k’th, in a round-robin fashion.

• It is common to use K = 5; this is called 5-fold CV.

• If we set K = N , then we get a method called leave-one out cross
validation, or LOOCV, since in fold i, we train on all the data cases
except for i, and then test on i.



Example: Ridge regression
• In polynomial regression, we can encourage the parameters to be small by

optimizing the following penalized least squares objective function

J(w) =
1

N

N∑

i=1

(yi − (w0 +wTxi))
2 + λ||w||22

where ||w||22 =
∑D

j=1w2
j is the ℓ2 norm of the weight vector.|| ||

∑

• (Note that the offset term w0 is not regularized, since this just affects the
height of the function, not its complexity.)

• Here the first term is the MSE as usual, and the second term is a com-
plexity penalty.

• λ ≥ 0 controls the strength of the penalty.

• This technique is known as ridge regression, and more generally as ℓ2
regularization or weight decay.



Example: Ridge regression

• Regression with polynomial of degree 14.



Example: Ridge regression



Example of Bayesian model selection



Example of Bayesian model selection



Occam’s razor
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