

CPSC540

Constrained Optimization

Nando de Freitas 2011 KPM Book Sections: 30.8

Constrained optimization

• Consider the following **constrained optimization problem**

$$\boldsymbol{\theta}^* = \operatorname*{argmin}_{\boldsymbol{\theta} \in \Omega} f(\boldsymbol{\theta})$$

where Ω is some **feasible set**. If the parameters are real-valued, we typically assume $\Omega \subseteq \mathbb{R}^D$, but it could be a more abstract space, such as the set of positive definite matrices.

• The feasible set is then often defined in terms of a set of equality constraints, $c_i(\theta) = 0$, and/or inequality constraints, $c_i(\theta) > 0$, for certain constraint functions c_i .

f(o)

Constrained optimization

- Suppose that we have a single equality constraint $c(\theta) = 0$.
- For example, we might have a quadratic objective, $f(\boldsymbol{\theta}) = \theta_1^2 + \theta_2^2$, subject to a linear equality constraint, $c(\boldsymbol{\theta}) = 1 \theta_1 \theta_2 = 0$.
- What we are trying to do is find the point $\boldsymbol{\theta}^*$ that lives on the line, but which is closest to the origin. It is geometrically obvious that the optimal solution is $\boldsymbol{\theta} = (0.5, 0.5)$.

Constrained optimization

- The gradient of the constraint function $\nabla c(\theta)$ will be orthogonal to the constraint surface.
- To see why, consider a point $\boldsymbol{\theta}$ on the constraint surface, and another point nearby, $\boldsymbol{\theta} + \boldsymbol{\epsilon}$, that also lies on the surface. If we make a Taylor expansion around $\boldsymbol{\theta}$ we have

$$c(\boldsymbol{\theta} + \boldsymbol{\epsilon}) \approx c(\boldsymbol{\theta}) + \boldsymbol{\epsilon}^T \nabla c(\boldsymbol{\theta})$$

Since both θ and $\theta + \epsilon$ are on the constraint surface, we must have $c(\theta) = c(\theta + \epsilon)$ and hence $\epsilon^T \nabla c(\theta) \approx 0$. Since ϵ is parallel to the constraint surface, we see that the vector ∇c is normal to the surface.

Constrained optimization

- We seek a point θ^* on the constraint surface such that $f(\theta)$ is minimized. Such a point must have the property that $\nabla f(\theta)$ is also orthogonal to the constraint surface, as otherwise we could decrease $f(\theta)$ by moving a short distance along the constraint surface.
- Since both $\nabla c(\boldsymbol{\theta})$ and $\nabla f(\boldsymbol{\theta})$ are orthogonal to the constraint surface at $\boldsymbol{\theta}^*$, they must be parallel (or anti-parallel) to each other. Hence there must exist a constant $\lambda^* \neq 0$ such that

$$\nabla f(\boldsymbol{\theta}^*) = \lambda^* \nabla c(\boldsymbol{\theta}^*)$$

 λ^* is called a Lagrange multiplier, and can be positive or negative, but not zero.

Lagrangian

• We can now convert our constrained optimization problem into an unconstrained one by defining a new function called the Lagrangian:

$$L(\boldsymbol{ heta},\lambda) := f(\boldsymbol{ heta}) - \lambda c(\boldsymbol{ heta})$$

We now have D + 1 equations in D + 1 unknowns, which we can solve for θ^* and λ . Why? Since we are only interested in θ^* , we can "throw away" the value λ ; hence it is sometimes called an **undetermined multiplier**.

$$\overline{V}_{0}L(0,\lambda) = \overline{V}_{0}f(0) - \lambda \overline{V}_{0}c(0) = 0$$

$$\overline{V}_{0}f(0) = \lambda \overline{V}_{0}c(0)$$

$$\overline{V}_{1}L(0,\lambda) = -\overline{V}_{0}(0) = 0$$

$$c(0) = 0$$

Inequality constraints

- Now consider the case where we have a single inequality constraint $c(\theta) \ge 0$.
- If the solution lies in the region where $c(\theta) > 0$, the constraint is <u>inactive</u>, so we have the usual stationarity condition $\nabla f(\theta^*) = 0$. Our equations still hold, provided we set $\lambda^* = 0$. LHS
- If the solution lies on the boundary where $c(\theta) = 0$, the constraint is active, so $\nabla c(\theta)$ and $\nabla f(\theta)$ must be parallel, as for the equality constraint case. RHS
- However, this time we require that $\lambda^* > 0$, so the gradients point in the same direction. Since the gradients of c and f point in the same direction, we will follow c to its minimum, where $c(\theta^*) = 0$.
- We can summarize these two cases by writing $\lambda^* c(\theta^*) = 0$; either $\lambda^* = 0$ or $c(\theta^*) = 0$ (or both). This is called the **complementarity condition**.

Inequality constraints

• Putting it all together, the problem of minimizing $f(\theta)$ subject to $c(\theta) \ge 0$ can be obtained by optimizing the Lagrangian subject to the following constraints:

$$\begin{array}{c|c} \hline c(\boldsymbol{\theta}) & \geq & 0 \\ \hline \lambda^* & \geq & 0 \\ \hline \lambda^* c(\boldsymbol{\theta}^*) & = & 0 \end{array}$$

Many constraints

• In general, if we have multiple equality constraints, $c_i(\boldsymbol{\theta}) = 0$ for $i \in \mathcal{E}$, and multiple inequality constraints, $c_i(\boldsymbol{\theta}) \ge 0$ for $i \in \mathcal{I}$, we can define the feasible set as

$$\Omega = \{ \boldsymbol{\theta} \in \mathbb{R}^{D} : \underbrace{c_{i}(\boldsymbol{\theta}) = 0, i \in \mathcal{E}}_{\text{eq.}}, \underbrace{c_{i}(\boldsymbol{\theta}) \geq 0, i \in \mathcal{I}}_{\text{ineq.}} \}$$
cangian as

and the Lagrangian as

$$L(\boldsymbol{\theta}, \boldsymbol{\lambda}) = f(\boldsymbol{\theta}) - \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i c_i(\boldsymbol{\theta})$$

• The **active set** is defined as the contraints that are active at a point:

$$\mathcal{A}(\boldsymbol{ heta}) = \boldsymbol{\xi} \cup \{i \in \mathcal{I} : c_i(\boldsymbol{ heta}) = 0\}$$

Karush-Kuhn-Tucker conditions

• We have the following necessary first-order conditions for being at a local minimum:

$$egin{array}{rcl}
abla_{oldsymbol{ heta}}L(oldsymbol{ heta},oldsymbol{\lambda})&=&\mathbf{0}\ c_i(oldsymbol{ heta}^*)&=&\mathbf{0}\ orall i\in\mathcal{E}$$
 $c_i(oldsymbol{ heta}^*)&\geq&\mathbf{0}\ orall i\in\mathcal{I}$
 $\lambda_i^*&\geq&\mathbf{0}\ orall i\in\mathcal{I}$
 $\lambda_i^*c_i(oldsymbol{ heta}^*)&=&\mathbf{0}\ orall i\in\mathcal{I}\cup\mathcal{E}$

- These are called the **Karush-Kuhn-Tucker** or **KKT** conditions.
- If f and the c_i are convex, the KKT conditions are sufficient for a minimum as well.

Example

• A generic quadratic program or QP has the form

$$\min_{\boldsymbol{\theta}} \frac{1}{2} \boldsymbol{\theta}^T \mathbf{H} \boldsymbol{\theta} + \mathbf{d}^T \boldsymbol{\theta} \text{ s.t. } \mathbf{A} \boldsymbol{\theta} \leq \mathbf{b}, \mathbf{A}_{eq} \boldsymbol{\theta} = \mathbf{b}_{eq}, \mathbf{b}_l \leq \boldsymbol{\theta} \leq \mathbf{b}_u$$

The constraints $\mathbf{b}_l \leq \boldsymbol{\theta} \leq \mathbf{b}_u$ are known as **box constraints**, and can always be rewritten as linear inequality constraints.

• QPs arise in several areas of machine learning, including support vector machines and lasso .

$$f(\boldsymbol{\theta}) = (\theta_1 - \frac{3}{2})^2 + (\theta_2 - \frac{1}{8})^2 = \frac{1}{2}\boldsymbol{\theta}^T \mathbf{H}\boldsymbol{\theta} + \mathbf{d}^T \boldsymbol{\theta} + \text{const}$$

(3/2 , 1/8)

where $\mathbf{H} = 2\mathbf{I}$ and $\mathbf{d} = -(3, 1/4)$, subject to $\|\mathbf{O}\|_{\mathbf{I}} = |\mathbf{O}_{\mathbf{I}}| + |\mathbf{O}_{\mathbf{I}}|$

We can rewrite the constraints as

which

$$(\theta_1 + \theta_2 \le 1, \theta_1 - \theta_2 \le 1, -\theta_1 + \theta_2 \le 1, -\theta_1 - \theta_2 \le 1)$$

we can write more compactly as

4

$$\mathbf{b} - \mathbf{A} \boldsymbol{ heta} \geq \mathbf{0}$$

where $\mathbf{b} = \mathbf{1}$ and $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ -1 & 1 \\ -1 & -1 \end{pmatrix}$

Quadratic programs

• The Lagrangian is

$$L(\boldsymbol{\theta}, \boldsymbol{\lambda}) = \frac{1}{2} \boldsymbol{\theta}^T \mathbf{H} \boldsymbol{\theta} + \mathbf{d}^T \boldsymbol{\theta} + \boldsymbol{\lambda}^T (\mathbf{A} \boldsymbol{\theta} - \mathbf{b})$$

and the KKT conditions are

$$\mathbf{H}\boldsymbol{\theta} + \mathbf{d} + \mathbf{A}^T \boldsymbol{\lambda} = \mathbf{0}$$
$$\mathbf{b} - \mathbf{A}\boldsymbol{\theta} \geq \mathbf{0}$$

If we treat the inequality as an equality, we can write

$$\begin{pmatrix} \mathbf{H} & \mathbf{A}^T \\ \mathbf{A} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{\theta} \\ \boldsymbol{\lambda} \end{pmatrix} = \begin{pmatrix} -\mathbf{d} \\ \mathbf{b} \end{pmatrix}$$

Quadratic programs

• The KKT matrix on the LHS is singular. Note constraints c_3 and c_4 (corresponding to the two left faces of the diamond) are inactive, so $c_3(\boldsymbol{\theta}^*) > 0$ and $c_4(\boldsymbol{\theta}^*) > 0$ and hence, by complementarity, $\lambda_3^* = \lambda_4^* = 0$. We can therefore remove these inactive constraints to get the following:

$$\begin{pmatrix} 2 & 0 & 1 & 1\\ 0 & 2 & 1 & -1\\ 1 & 1 & 0 & 0\\ 1 & -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \theta_1\\ \theta_2\\ \lambda_1\\ \lambda_2 \end{pmatrix} = \begin{pmatrix} 3\\ 1/4\\ 1\\ 1 \end{pmatrix}$$

We see that the solution is

$$\boldsymbol{\theta}^* = (1,0)^T, \boldsymbol{\lambda}^* = (0.875, 0.125, 0, 0)^T$$

Notice that the optimal value of θ occurs at one of the vertices of the L1 simplex. Consequently the solution vector is sparse.

Lasso for feature selection

Duality

• Consider the **primal problem**

$$\widehat{\min_{\boldsymbol{\theta}} f(\boldsymbol{\theta})} \text{ s.t. } \mathbf{c}(\boldsymbol{\theta}) \geq \mathbf{0}$$

The Lagrangian is

$$(L(\boldsymbol{\theta}, \boldsymbol{\lambda}) = f(\boldsymbol{\theta}) - \boldsymbol{\lambda}^T \mathbf{c}(\boldsymbol{\theta})) = \boldsymbol{\lambda} (\boldsymbol{\theta}) + \boldsymbol{L}$$

We define the **dual** objective function as

$$g(\boldsymbol{\lambda}) = \min_{\boldsymbol{\theta}} L(\boldsymbol{\theta}, \boldsymbol{\lambda}) = \min_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) - \lambda^T \mathbf{c}(\boldsymbol{\theta}) = -f^*(\boldsymbol{\lambda})$$

where f^* is the **Fenchel conjugate** of f.

• We see that the dual objective g is a concave function, since it is a minimum over an affine function of λ . The corresponding dual problem is

$$\max_{oldsymbol{\lambda}} g(oldsymbol{\lambda}) ext{ s.t. } oldsymbol{\lambda} \geq oldsymbol{0}$$

• The key question is, do the two methods give the same results? Let
$$p^* = f(\theta^*)$$
 be the optimal primal value, and $d^* = g(\lambda^*)$ be the optimal dual value. We have the following two important theorems:
- Weak duality: $d^* \leq p^*$ This always holds. To see this, note that for $\lambda \geq 0$, since $\mathbf{c}(\theta) \geq \mathbf{0}$,
 $f(\theta) \geq L(\theta, \lambda) \geq \min_{\theta'} L(\theta', \lambda) = g(\lambda)$

- Strong duality: $\underline{d^* = p^*}$. This only holds for convex problems. The reason is that a convex function can be precisely represented either in primal or dual form.

Put another way, for any real function $L(\theta, \lambda)$, weak duality says we always have

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\lambda}} L(\boldsymbol{\theta}, \boldsymbol{\lambda}) \geq \max_{\boldsymbol{\lambda}} \min_{\boldsymbol{\theta}} L(\boldsymbol{\theta}, \boldsymbol{\lambda})$$

If strong duality holds, the two terms are equal, so the **duality gap**, $p^* - d^*$, is zero. In this case, $L(\theta^*, \lambda^*)$ is a saddle point.

Next class

Bayesian Learning

Nando de Freitas 2011 KPM Book Sections: 4

