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Second-order optimization

• First-order methods do not use the Hessian, and do not model the curva-
ture of the space. Hence they can be slow to converge.

• Second-order optimization methods make use of the Hessian, in one form
or another, and converge much faster.

• However, storing the full Hessian takes O(D2) space, and inverting it• However, storing the full Hessian takes O(D ) space, and inverting it
can take O(D3) time, so the overall computation time for second-order
methods may be higher than for first-order methods, depending on the
cost of evaluating the objective function and its gradient.



Newton’s algorithm
• The most basic second-order optimization algorithm is Newton’s algo-
rithm, which consists of updates of the form

θk+1 = θk −H−1

K gk

• This algorithm can be derived as follows. Consider making a second-order
Taylor series approximation of f(θ) around θk:

fquad(θ) = fk + gTk (θ − θk) +
1

2
(θ − θk)

THk(θ − θk)

Let us rewrite this as

fquad(θ) = θTAθ + bTθ + c

where
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Hk, b = gk −Hkθk, c = fk − gTk θk +
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The minimum of f is at?The minimum of fquad is at?



Newton’s method



Newton’s algorithm

• Rather than computing dk = −H−1

k gk directly, we can solve the linear
system of equations Hkdk = −gk for dk.

• One efficient way to do this, especially if H is sparse, is to use a conjugate
gradient method. This combination is called Newton-CG, and is widely
used.



Newton’s method



Newton’s algorithm
• If the objective function is not convex, then Hk may not be positive defi-

nite, so dk = −H−1

k gk may not be a descent direction.



Newton’s algorithm
• One simple solution is to revert to steepest descent, dk = −gk. The
Levenberg Marquardt algorithm is an adaptive way to blend between
Newton steps and steepest descent steps.

• This method is widely used when solving nonlinear least squares problems.

• An alternative approach is to add δkI to Hk for some δk > 0 to make it
positive definite.positive definite.

• If we are using CG, we can simply truncate the CG iterations as soon as
negative curvature is detected; this is called truncated Newton.



Iteratively reweighted least squares (IRLS)

• For the MLE for binary logistic regression, recall that the gradient and
Hessian of the NLL are given by

gk = XT (µk − y)

Hk = XTSkX

Sk := diag(µ1k(1− µ1k), . . . , µNk(1− µNk))

µik = sigm(wT
k xi)µik = sigm(wk xi)

• The Newton update at iteration k + 1 for this model is as follows (using
ηk = 1, since the Hessian is exact):

wk+1 = wk −H−1gk

= wk + (XTSkX)−1XT (y − µk)

= (XTSkX)−1
[
(XTSkX)wk +XT (y− µk)

]

= (XTSkX)−1XT [SkXwk + y − µk]



Iteratively reweighted least squares (IRLS)

• We can rewrite this as a weighted least squares problem

wk+1 = (XTSkX)−1XTSkzk

where we have defined the targets (outputs) as

zk := Xwk + S−1k (y− µk)

• Since Sk is a diagonal matrix, we can rewrite the targets in component
form (for each case i = 1 : N) as

zki = wT
k xi +

yi − µki

µki(1− µki)



IRLS Algorithm



Quasi-Newton (variable metric) methods

• The Newton direction dk = −H−1

k gk has two drawbacks. The first is that
it is not necessarily a descent direction unless Hk is positive definite.

• The second is that it may be too expensive to compute H explicitly.

• Quasi-Newton methods iteratively build up an approximation to the• Quasi-Newton methods iteratively build up an approximation to the
Hessian using information gleaned from the gradient vector at each step.



BFGS
• BFGS (named after its inventors, Broyden, Fletcher, Goldfarb and Shanno),

updates the approximation to the Hessian Bk ≈ Hk as follows:

Bk+1 = Bk +
yky

T
k

yTk sk
−
BT
k s

T
k skBk

sTkBksk

sk = θk − θk−1

yk = gk − gk−1

This is a rank-two update to the matrix, and ensures that the matrixThis is a rank-two update to the matrix, and ensures that the matrix
remains positive definite. Why?

• Alternatively, BFGS can iteratively update an approximation to the in-
verse Hessian, Ck ≈ H−1

k , as follows:

Ck+1 = (I−
sky

T
k

yTk sk
)Ck(I−

yks
T
k

yTk sk
) +

sks
T
k

yTk sk

• Another similar method is called DFP (named after Davidon, Fletcher,
and Powell).



L-BFGS

• Since storing the Hessian takes O(D2) space, for very large problems, one
can use limited memory BFGS, or LBFGS, where a low rank approx-
imation to Hk or H−1

k is stored implicitly. In particular, the product
H−1

k gk can be obtained by performing a sequence of inner products with
sk and yk, using only the m most recent (sk,yk) pairs, and ignoring older
information. Typically m ∼ 20 suffices for good performance.

• LBFGS is probably the method of choice for most unconstrained opti-
mization problems that arise in machine learning (e.g., fitting logistic re-
gression, CRFs, neural nets, etc.).
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