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Second-order optimization

¢ First-order methods do not use the Hessian, and do not model the curva-
ture of the space. Hence they can be slow to converge.

¢ Second-order optimization methods make use of the Hessian, in one form
or another, and converge much faster.

o However, storing the full Hessian takes O(D?) space, and inverting it
can take O(D?) time, so the overall computation time for second-order
methods may be higher than for first-order methods, depending on the
cost of evaluating the objective function and its gradient.



Newton’s algorithm

The most basic second-order optimization algorithm is Newton’s algo-
rithm, which consists of updates of the form

Ori1 =05, — H'gs

This algorithm can be derived as follows. Consider making a second-order
Taylor series approximation of f(6) around Oy:
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Let us rewrite this as
Fouad(0) = 07 A0 + b1 + ¢
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Newton’s method




Newton’s algorithm

e Rather than computing d; = —H,;lgk directly, we can solve the linear
system of equations Hyd; = —g;. for d;.

e One efficient way to do this, especially if H is sparse, is to use a conjugate
gradient method. This combination is called Newton-CG, and is widely
used.



Newton’s method

Initialize 6

for £ = 1.2,... until convergence do

Evaluate g = V f(6})

Evaluate H;,, = V2 (6},

Solve H,d, = —g,. for dy

Use line search to find stepsize 7, along dy,
Ori1 = 0 + nrpdy




Newton’s algorithm

e If the objective function is not convex, then H; may not be positive defi-
nite, so dg = —H,;l g, may not be a descent direction.




Newton’s algorithm

One simple solution is to revert to steepest descent, d, = —gi. The
Levenberg Marquardt algorithm is an adaptive way to blend between
Newton steps and steepest descent steps.

This method is widely used when solving nonlinear least squares problems.

An alternative approach is to add d. I to Hy for some ¢, > 0 to make it
positive definite.

If we are using CG, we can simply truncate the CG iterations as soon as
negative curvature is detected; this is called truncated Newton.



Iteratively reweighted least squares (IRLS

e For the MLE for binary logistic regression, recall that the gradient and
Hessian of the NLL are given by
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sigm(wi x;)

e The Newton update at iteration k + 1 for this model is as follows (using
N, = 1, since the Hessian is exact):
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Iteratively reweighted least squares (IRLS

e We can rewrite this as a weighted least squares problem
Wil = (XTSkX)_leSk-Zk
where we have defined the targets (outputs) as

z, = Xwy, + S, ' (y — )

e Since S; is a diagonal matrix, we can rewrite the targets in component
form (for each case i =1: ) as

T Yi — KUki
Zki = WL X; +
' ST (1 — )




IRLS Algorithm

1 W — OD

2 wo = log(y/(1 —7))

3 repeat

4 ;i = Wo + WTX@_

2 ;= sigm(n;)

6 Zi = 1; y _S;(il__'( LE )

7 S; = H)@_(l — pb.-gj)

8 S = diag(s1.n)

9 | w=(X!SX) 1X!Sz

10 until converged




Quasi-Newton (variable metric) methods

e The Newton direction d; = —H,;lgk has two drawbacks. The first is that
it is not necessarily a descent direction unless Hj, is positive definite.

e The second is that it may be too expensive to compute H explicitly.

e (Quasi-Newton methods iteratively build up an approximation to the
Hessian using information gleaned from the gradient vector at each step.



BFGS

e BF'GS (named after its inventors, Broyden, Fletcher, Goldfarb and Shanno),
updates the approximation to the Hessian B, ~ Hj as follows:

yryr Bisls;By

Bit1 = B+ —
ykTsk SZBkSk
s, = 0p—0,_
Y — 8k — 8k-1

This is a rank-two update to the matrix, and ensures that the matrix
remains positive definite. Why?

e Alternatively, BFGS can iteratively update an approximation to the in-
verse Hessian, Cj ~ Hzl, as follows:

T T T
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e Another similar method is called DFP (named after Davidon, Fletcher,
and Powell).



L-BFGS

e Since storing the Hessian takes O(D?) space, for very large problems, one
can use limited memory BFGS, or LBFGS, where a low rank approx-
imation to Hj or H,;l is stored implicitly. In particular, the product
H,;l g, can be obtained by performing a sequence of inner products with
si and yy, using only the m most recent (sg,yx) pairs, and ignoring older
information. Typically m ~ 20 suffices for good performance.

e LBFGS is probably the method of choice for most unconstrained opti-
mization problems that arise in machine learning (e.g., fitting logistic re-
gression, CRFs, neural nets, etc.).
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