
CPSC540

Nando de Freitas
2011
KPM Book Sections: 11.2

Optimization IOptimization IOptimization IOptimization I

Revision: Gradient vector
• Let x be an n-dimensional vector, and f(x) a scalar-valued function. The
gradient vector of f with respect to x is the following vector:

∇xf(x) =

∂f(x)
∂x1
∂f(x)
∂x2
...

∂f(x)
∂xn

∂xn

• The Hessian matrix of a scalar valued function with respect to x, written
∇2
x
f(x) or simply as H, is the n× n matrix of partial derivatives,

∇2
x
f(x) =

∂2f(x)
∂x21

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2

· · · ∂2f(x)
∂x2∂xn

...
...

. . .
...

Revision: Hessian matrix

 . . .

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

· · · ∂2f(x)
∂x2

n

• We can think of the Hessian as the gradient of the gradient, which can be
written as

H = ∇x(∇
T
x
f(x))

Revision: MLE for binary logistic regression
• The gradient and Hessian of J(w) are given by:

g(w) =
d

dw
J(w) =

∑

i

(πi − yi)xi = XT (π − y)

H =
d

dw
g(w)T =

∑

i

(∇wπi)x
T
i =

∑

i

πi(1− πi)xix
T
i = XTdiag(πi(1− πi))X

• One can show that H is positive definite; hence the NLL is convex and•
has a unique global minimum.

• To find this minimum, we will however have to learn a few things about
optimization.

PMTK – logistic regression
• winit = randn(D,1);

options.Display = ’none’;

[wMLE] = minFunc(@(w)LogisticLossSimple(w,X,y), winit, options);

• function [nll,g,H] = LogisticLossSimple(w,X,y)

% Negative log likelihood for binary logistic regression

% w: d*1

% X: n*d

% y: n*1, should be -1 or 1

y01 = (y+1)/2;

mu = sigmoid(X*w);

nll = -sum(y01 .* log(mu) + (1-y01) .* log(1-mu));

if nargout > 1

g = X’*(mu-y01);

end

if nargout > 2

H = X’*diag(mu.*(1-mu))*X;

end

Unconstrained optimization
• We focus on optimization algorithms which can solve ML parameter esti-
mation problems of the following form:

θ
∗ = argmax

θ

log p(D|θ)

• In the optimization community, it is more common to minimize functions
than maximize them. We will therefore define our objective functionthan maximize them. We will therefore define our objective function

as follows:

f(θ) := − log p(D|θ)

Steepest descent
• One of the simplest optimization algorithms is called gradient descent

or steepest descent. This can be written as follows:

θk+1 = θk − ηkgk = θk − ηk∇f(θ)

where k indexes steps of the algorithm, gk = g(θk) is the gradient at step
k, and ηk > 0 is called the learning rate or step size.

• By Taylor’s theorem, we have• By Taylor’s theorem, we have

f(θk+1) ≈ f(θk) + η∇f(θk)(θk+1 − θk) = f(θk)− η‖∇f(θk)‖
2

Steepest descent
• One of the simplest optimization algorithms is called gradient descent

or steepest descent. This can be written as follows:

θk+1 = θk − ηkgk

where k indexes steps of the algorithm, gk = g(θk) is the gradient at step
k, and ηk > 0 is called the learning rate or step size.

• If the function is convex, gradient descent will in theory always converge
to the global minimum.

• If the function is non-convex, it will converge to a local minimum, which is
a point where the gradient vanishes, g = 0, and the Hessian H is positive
definite, so all sides of the “bowl” point “up hill”.

• If H is only positive semi-definite, we are at a turning or stationary point;
such points are usually unstable, so we will generally disregard them.

Step size choice

Line search
• Let us develop a more stable method for picking the step size, so that the
method is guaranteed to converge to a local optimum no matter where we
start. (This property is called global convergence, which should not be
confused with convergence to the global optimum!)

• Let us consider the update along a search direction d:

θk+1 = θk + ηkdk

• ηk is assumed to be positive and d is a descent direction. That is, gTd < 0.

• By Taylor’s expansion:

f(θ + ηd) ≈ f(θ) + ηgTd

Line search
•

θk+1 = θk + ηkdk

f(θ + ηd) ≈ f(θ) + ηgTd

• Hence, can pick η to minimize

φ(η) = f(θk + ηdk)

subject to the constraint that the resulting direction is a descent direction
(the so-called Wolfe conditions). This is called line minimization or
line search.

• This optimization of η can be costly.

• Alternatively, choose an initial step size η. If the step size does lot lead to
a reduction in the objective function, then reduce the step size and repeat.
This is the intuituition behind the Armijo rule.

Line search

Momentum
• One simple heuristic to reduce the effect of zig-zagging is to add a mo-

mentum term, as follows:

θk+1 = θk + (1− µk)ηkgk + µk(θk − θk−1)

where 0 ≤ µk ≤ 1 is the amount of momentum.

• This technique is widely used to train neural networks and other nonlinear• This technique is widely used to train neural networks and other nonlinear
models, such as deep belief nets.

• Hinton recommends starting with µk = 0.5 and then slowly increasing this
to µk = 0.9. See also results of Kevin Swersky.

Stochastic gradient descent
• Traditionally machine learning is performed offline, which means we have
a batch of data, and we optimize a cost function of the form

f(θ) =
1

N

N∑

n=1

f(θ,xn)

where we sum the cost over the N iid training cases.

• The gradient is therefore given by• The gradient is therefore given by

g(θ) = ∇f(θ) =
1

N

N∑

n=1

∇f(θ, xn)

• In some cases, we can solve g(θ) = 0 in closed form, but in general, we
will have to use gradient-based optimizers.

• If we have streaming data, we want to perform online learning, so
we can update our estimates as each new data point arrives rather than
waiting until “the end” (which may never occur).

Stochastic gradient descent
• We can use an approach known as stochastic gradient descent or SGD

to solve such problems. The idea is to rewrite the objective and its gradient
as an expectation wrt the empirical distribution:

f(θ) = Ex∼pemp [f(θ,x)] , g(θ) = Ex∼pemp [∇f(θ,x)]

We now approximate the gradient with a single sample, corresponding to
the most recent observation:

θk = θk−1 − ηkg(θk−1,xk)

Stochastic gradient descent
• SGD can also be used for offline learning, by repeatedly cycling through
the data; each such pass over the whole dataset is called an epoch. This
is useful if we have massive datasets that will not fit in main memory.
In this offline case, it is often better to compute the gradient of a mini-

batch of B data cases. If B = 1, this is standard SGD, and if B = N ,
this is standard steepest descent. Typically B ∼ 100 is used.

• Intuitively, one can get a fairly good estimate of the gradient by looking
at just a few examples. Carefully evaluating precise gradients using large

•
at just a few examples. Carefully evaluating precise gradients using large
datasets is often a waste of time, since the algorithm will have to recom-
pute the gradient again anyway at the next step. It is often a better use
of computer time to have a noisy estimate and to move rapidly through
parameter space.

• SGD is often less prone to getting stuck in shallow local minima, because it
adds a certain amount of “noise”. Consequently it is quite popular in the
machine learning community for fitting models such as neural networks
and deep belief networks with non-convex objectives.

• We cannot use line-search to set ηk, so what should we do instead?

• To guarantee convergence, the learning rate must satisfy the following
Robbins-Monro conditions:

∞∑

k=1

ηk =∞ and

∞∑

k=1

η2k <∞

The set of values of ηk over time is called the learning rate schedule.

• Various formulas are used, such as ηk = 1/k, ηk =
τ

τ+kη0, or ηk = η0k
−τ• Various formulas are used, such as ηk = 1/k, ηk = τ+kη0, or ηk = η0k
−

for α ∈ (12 , 1), where τ and η0 are tuning parameters. The need to adjust
these tuning parameters carefully is one of the main drawback of stochastic
optimization.

• If the objective is convex and we know the number of iterations, then we
also know, theoretically, the fixed value that η must be equal to (Ne-
mirovsky, Juditsky, Lan and Shapiro, 2009).

• It is also possible to use second order methods that incorporate Hessian
information (Richard H. Byrd, Gillian M. Chin, Will Neveitt and Jorge
Nocedal, 2010) and Yurii Nesterov.

Averaging
• To reduce the variance of the estimate, we can average the estimates using

θk =

k∑

t=1

θt

• This is called Polyak-Ruppert averaging. This can be implemented
recursively as follows:recursively as follows:

θk = θk−1 −
1

k
(θk−1 − θk)

• The use of this scheme in principle allows one to use a fixed learning rate
ηk. The idea is that the θk estimates quickly converge to near the optimum
and then wander around it, while θk averages out these fluctuations. This
suggests that we should not start the averaging process until after a “burn-
in” phase.

The LMS algorithm
• As an example of SGD, let us consider how to compute the MLE for linear
regression in an online fashion. The online gradient at iteration k is given
by

gk := g(wk) ≈ (w
Txi − yi)xi

where i = k mod N is the training example to use at iteration k.

• The feature vector xi is weighted by the difference between what we pre-• i

dicted, ŷi = µi = wT
k xi, and the true response, yi; hence the gradient acts

like an error signal.

• After computing the gradient, we take a step along it as follows:

wk = wk−1 − ηkgk = wk−1 − ηk(µi − yi)xi

This algorithm is called the least mean squares or LMS algorithm, and
is also known as the delta rule, or theWidrow-Hoff rule.

The LMS algorithm

The LMS algorithm

i = 1; iter = 1; eta = 0.1; sf = 0.999;

while ~done

xi = X(i,:)’;

yhat(i) = w’ * xi;

wold = w;

w = w + eta * (y(i)-yhat(i)) * xi;w = w + eta * (y(i)-yhat(i)) * xi;

eta = eta * sf;

iter = iter + 1;

i = mod(i,n)+1;

if norm(w-wold) < 1e-2 || iter > maxIter

done = true;

end

end

The perceptron algorithm
• Now let us consider how to fit a binary logistic regression model in an
online manner. The weight update has the simple form

wk = wk−1 − ηkgi = wk−1 − ηk(µi − yi)xi

where µi = p(yi = 1|xi,wk) = E [yi|xi,wk].

• We now consider an approximation to this algorithm. Specifically, let•

ŷi = arg max
y∈{0,1}

p(y|xi,w)

represent the most probable class label.

• We replace µi = p(y = 1|xi,w) = sigm(w
Txi) in the gradient expression

with ŷi. Thus the approximate gradient becomes

gi ≈ (ŷi − yi)xi

• It will make the algebra prettier if we assume y ∈ {−1,+1} rather than
y ∈ {0, 1}. In this case, our prediction becomes

ŷi = sign(w
Txi)

If ŷiyi = −1, we made an error, but if ŷiyi = +1, we guessed right.

• If we predicted correctly, then ŷi = yi, so the (approximate) gradient is
zero and we do not change the weight vector. But if xi is misclassified,
we update the weights as follows:

— If ŷ = 1 but y = −1, the negative gradient is −(ŷ − y)x = −2x ;— If ŷi = 1 but yi = −1, the negative gradient is −(ŷi − yi)xi = −2xi;

— if ŷi = −1 but yi = 1, the negative gradient is −(ŷi − yi)xi = 2xi.

• We can absorb the factor of 2 into the learning rate η and just write the
update, in the case of a misclassification, as

wk = wk−1 + ηkyixi

Note that we can set η = 1, since it is only the sign of the weights that
matter, not the magnitude. The resulting algorithm is called the percep-

tron algorithm.

The perceptron algorithm
function [w,w0] = perceptronFit(X, y)

% X(i,:) is i’th case, y(i) = -1 or +1

labels = y; features = X’;

[n d] = size(X);

w = zeros(d,1);

w0 = 0;

max_iter = 100;

for iter=1:max_iterfor iter=1:max_iter

errors = 0;

for i=1:n

if (labels(i) * (w’ * features(:,i) + w0) <= 0)

w = w + labels(i) * features(:,i);

w0 = w0 + labels(i);

errors = errors + 1;

end

end

if (errors==0), break; end

end

Next
class

Nando de Freitas
2011
KPM Book Sections: 11.3 and 30.48

Second order methods and Second order methods and Second order methods and Second order methods and

constrained constrained constrained constrained optimizationoptimizationoptimizationoptimization

