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Regression
• Regression is just like classification except the response variable is contin-

uous, y ∈ R.

• To make the output y depend on the input x, we can write

p(y|x, θ) = N (y|µ(x), σ2(x))

In the simplest case, we assume µ is a linear function of x, so µ = wTx,
and that the noise is fixed, σ2(x) = σ2. This model is called linearand that the noise is fixed, σ2(x) = σ2. This model is called linear
regression.

• It can be equivalently written in the following form:

y(x) = wTx+ ǫ

where ǫ ∼ N (0, σ2) is the residual error between our linear predictions
and the true response.
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Basis functions
• Here, we can also introduce basis functions to deal with nonlinearity:

y(x) = wTφ(x) + ǫ

For example, φ(x) = [1, x, x2], φ(x) = [1, x1, x2] or φ(x) = [1, x1, x2, x
2
1, x

2
2].





Kernel regression
• Another way to perform nonlinear regression is to use kernels to define

the basis functions, φ(x) = [κ(x,µ1), . . . , κ(x,µD′)].



Negative log likelihood
• The negative log likelihood for linear regression can be written as follows:

NLL(w) = −
N∑

i=1

log p(yi|xi,w) =

n∑

i=1

(yi − x
T
i w)2 + const

= ||Xw − y||22 + const = (y −Xw)T (y −Xw) + const



MSE
• We can equivalently minimize

mse(w) =
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wT (XTX)
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is the sum of squares matrix and
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• The gradient and Hessian are given by

∇wmse(w) =
1

N
[XTXw −XTy] =

1

N

N∑

i=1

xi(w
Txi − yi)

∇2wmse(w) = ∇w(∇wmse(w)T ) =
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N∑
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xix
T
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N
XTX

Gradient and Hessian

∑

The Hessian is positive definite (assuming X is full rank).



MLE = OLS
• The MSE has a unique global minimum. We can solve for this analytically

by equating the gradient to zero:

∇wmse(w) = XTXw −XTy = 0

XTXŵ = XTy

ŵ = (XTX)−1XTy

• The solution, ŵ, is called the ordinary least squares or OLS solution.• The solution, ŵ, is called the ordinary least squares or OLS solution.



MLE of the variance
• Once we have found the ML estimate of the weights, ŵ, we can easily find

the ML estimate for the variance by solving ∂
∂σ2
NLL(ŵ, σ2) = 0 to get

σ̂2 =
1

N

N∑

i=1

(yi − x
T
i ŵ)2

• This is just the empirical variance of the residual errors when we “plug•
in” our estimate of ŵ.





Weighted least squares
• Sometimes some measurements are more reliable than others; this is called
heteroscedastic data.

• We can model this by assigning a different precision (inverse variance)
λi = σ−2i to each data point; these act as weighting terms.

• The new negative log-likelihood is given by the following (up to irrelevant
constants):

N∑
J(w) =

N∑

i=1

λi(yi −w
Txi)

2

• It is easy to show that the corresponding MLE is given by

ŵ = (XTΛX)−1(XTΛy)

where Λ = diag(λ) is a diagonal matrix of precisions. This is known as
weighted least squares.





Multivariate linear regression
• Multivariate linear regression, also called multiple-output linear
regression, is just like “regular” linear regression, except the output is a
vector. Hence we replace the weight vector with a weight matrix:

yi =WTxi + ǫi

where xi is a column vector of Dx inputs (covariates), yi is a column
vector of Dy outputs (responses), W is a Dx ×Dy weight matrix (so we×
have one column per output), and ǫi ∼ N (0,Σ).

• In matrix notation, we have

Y(N×Dy) = X(N×Dx)W(Dx×Dy) + ǫ(N×Dy)



Multivariate linear regression
• If Σ = diag(σj) is diagonal, we can compute the MLE for each column of
W separately. To see why, let w:j be the j’th column of W, and y:j be
the j’th column of Y. The NLL cost function is given by

J(W) =

N∑

i=1

D∑

j=1

1

2σ2j
(yi,j −w

T
j xi)

2 =

D∑

j=1

1

2σ2j
||Xw:j − y:j ||

2
2

Hence J(W) decomposes into separate problems, one per column. The σHence J(W) decomposes into separate problems, one per column. The σj
terms will cancel out when we take derivatives to yield

ŵ:j = (XTX)−1XTy:j

Concatentating the solutions gives

Ŵ = (ŵ:1 . . . ŵ:Dy
) = (XTX)−1XT (y:1 . . .y:Dy

) = (XTX)−1XTY



Multivariate linear regression

• Multiple-output linear regression is an example of multi-task learning.
Of course, if we fit each response separately, we are solving each “task”
separately, and we do not get any benefit from having multiple problems
to solve.

• We can use hierarchical Bayesian methods to “borrow statistical strength”
from easy tasks to help learn hard tasks; this can reduce the amount offrom easy tasks to help learn hard tasks; this can reduce the amount of
training data we need to fit the model.



PMTK – linear regression

• % Matrix method

Xtrain1 = [ones(size(Xtrain,1),1) Xtrain];

w = Xtrain1 \ ytrain;

% Scalar method

xbar = mean(xtrain); ybar = mean(ytrain); N = length(ytrain);

w1 = sum( (xtrain-xbar) .* (ytrain-ybar) ) / sum( (xtrain-xbar).^2 );

w0 = ybar - w1*xbar;

assert(approxeq([w0 w1], w))

% Predict

Xtest1 = [ones(size(Xtest,1),1) Xtest];

ypredTest = Xtest1*w;



PMTK – logistic regression
• winit = randn(D,1);

options.Display = ’none’;

[wMLE] = minFunc(@(w)LogisticLossSimple(w,X,y), winit, options);

• function [nll,g,H] = LogisticLossSimple(w,X,y)

% Negative log likelihood for binary logistic regression

% w: d*1

% X: n*d

% y: n*1, should be -1 or 1

y01 = (y+1)/2;

mu = sigmoid(X*w);

nll = -sum(y01 .* log(mu) + (1-y01) .* log(1-mu));

if nargout > 1

g = X’*(mu-y01);

end

if nargout > 2

H = X’*diag(mu.*(1-mu))*X;

end



Robust regression

• One way to achieve robustness to outliers is to replace the Gaussian
distribution for the response variable with a distribution that has heavy
tails.

• Such a distribution will assign higher likelihood to outliers, without having
to perturb the straight line to “explain” them.



Robust regression



Laplace distribution

• The Laplace distribution, also known as the double sided exponential
distribution, has the following pdf:

Lap(x|µ, b) :=
1

2b
exp

(
−
|x− µ|

b

)

• Here µ is a location parameter and b > 0 is a scale parameter. The mean• Here µ is a location parameter and b > 0 is a scale parameter. The mean
of the distribution is µ, and the variance is 2b2.

• The MLE for µ in a Laplace distribution is the median of the data, whereas
the MLE for µ in a Gaussian distribution is the mean of the data

• If we use the Laplace distribution as the output density for linear regres-
sion, we get the following log-likelihood:

log p(D|w, b) =

N∑

i=1

log Lap(yi|w
Txi, b) = −N log(2b) −

1

b

N∑

i=1

|yi −w
Txi|



Student T distribution

• The Student T distribution also has pdf:

T (x|µ, σ2, ν) ∝

[
1 +

1

ν
(
x− µ

σ
)2
]−( ν+1

2
)

where µ is the mean, σ2 > 0 is the scale parameter, and ν > 0 is calledwhere µ is the mean, σ > 0 is the scale parameter, and ν > 0 is called
the degrees of freedom.

• If ν = 1, it is known as the Cauchy distribution. As ν → ∞, the distri-
bution rapidly approaches a Gaussian. Use ν ∼ 3; bigger than 2 to ensure
it has finite variance and less than 5 to maintain heavy tails.

• The Student has heavier tails than the Laplace, making it more robust.

• Student distribution for robust linear regression model:

p(yi|xi,w, σ
2, ν) = T (yi|w

Txi, σ
2, ν)
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