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Regression

e Regression is just like classification except the response variable is contin-
uous, y € R.

e To make the output y depend on the input x, we can write

p(ylx, 0) = N (y|u(x), 0% (x))

In the simplest case, we assume g is a linear function of x, so p = w'x,
and that the noise is fixed, 0%(z) = ¢?. This model is called linear
regression.

e It can be equivalently written in the following form:

y(x) =w'x +e

where € ~ N (0,0?) is the residual error between our linear predictions
and the true response.
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Basis functions

e Here, we can also introduce basis functions to deal with nonlinearity:

y(x) = w' p(x) + ¢

For example, ¢(z) = [1,z, 2%, ¢(x) = [1, 21, zo] or p(x) = [1, 21, T2, 27, 23],
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Kernel regression

e Another way to perform nonlinear regression is to use kernels to define
the basis functions, ¢(x) = [k(x, 1), - - ., (X, /)]
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Negative log likelihood

e The negative log likelihood for linear regression can be written as follows:

N
- Z log p(yi|xi, w
7::1
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MSE

e We can equivalently minimize
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Gradient and Hessian

e The gradient and Hessian are given by

1
Vwmse(w) = N[XTXW X'yl ZXZW Xi = Yi)

V2 mse(w) = Vi (Vymse(w ZXZ = —XTX

The Hessian is positive definite (assuming X is full rank).
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MLE = OLS

e The MSE has a unique global minimum. We can solve for this analytically
by equating the gradient to zero:

Vwmse(w) = X'Xw-X'y=0
X'Xw = Xty
w = XI'X)"'X'y

e The solution, w, is called the ordinary least squares or OLS solution.



MLE of the variance

e Once we have found the ML estimate of the weights, w, we can easily find
the ML estimate for the variance by solving a%fQN LL(w,0?) =0 to get

1N
A:NZ

e This is just the empirical variance of the residual errors when we “plug
in” our estimate of w.






Weighted least squares

Sometimes some measurements are more reliable than others; this is called
heteroscedastic data.

We can model this by assigning a different precision (inverse variance)
AN =0, 2 to each data point; these act as weighting terms.

The new negative log-likelihood is given by the following (up to irrelevant
constants):

J(W) = Z )\Z(yz — WTXZ')2

i=1
It is easy to show that the corresponding MLE is given by
w = (XTAX) 1 (XTAy)

where A = diag(\) is a diagonal matrix of precisions. This is known as
weighted least squares.






Multivariate linear regression

e Multivariate linear regression, also called multiple-output linear
regression, is just like “regular” linear regression, except the output is a
vector. Hence we replace the weight vector with a weight matrix:

yi=W'x; +¢

where x; is a column vector of D, inputs (covariates), y; is a column
vector of D, outputs (responses), W is a D, x D, weight matrix (so we
have one column per output), and €; ~ N (0, X).

e In matrix notation, we have

Ynxp,) = X(NxD, )W (D,xD,) + € NxD,)



Multivariate linear regression

o If 3 = diag(c,) is diagonal, we can compute the MLE for each column of
W separately. To see why, let w.; be the j’th column of W, and y.; be
the 5’th column of Y. The NLL cost function is given by

N D 1 D 1
JW) = 33 iy~ wixi)* = Y o5l Xwy —yylf3
i=1j=1 " J =1 J

Hence J(W) decomposes into separate problems, one per column. The o;
terms will cancel out when we take derivatives to yield

w, = (X'X)"' X"y,
Concatentating the solutions gives

W= (W1...wp,)=X"X)"'X"(y1...y.p,) = (X' X)"' XY

Yy



Multivariate linear regression

e Multiple-output linear regression is an example of multi-task learning.
Of course, if we fit each response separately, we are solving each “task”
separately, and we do not get any benefit from having multiple problems
to solve.

e We can use hierarchical Bayesian methods to “borrow statistical strength”
from easy tasks to help learn hard tasks; this can reduce the amount of
training data we need to fit the model.



PMTK — linear regression

e /, Matrix method
Xtrainl = [ones(size(Xtrain,1),1) Xtrain];
w = Xtrainl \ ytrain;

% Scalar method

xbar = mean(xtrain); ybar = mean(ytrain); N = length(ytrain);

wl = sum( (xtrain-xbar) .* (ytrain-ybar) ) / sum( (xtrain-xbar)."2 );
w0 = ybar - wl*xbar;

assert (approxeq([w0 will, w))

% Predict
Xtestl = [ones(size(Xtest,1),1) Xtest];
ypredTest = Xtestl*w;



PMTK - logistic regressic

e winit = randn(D,1);
options.Display = ’none’;
[WMLE] = minFunc(@(w)LogisticLossSimple(w,X,y), winit, options);

e function [nll,g,H] = LogisticLossSimple(w,X,y)
% Negative log likelihood for binary logistic regression
h w: dx1
% X: nxd
% y: nxl, should be -1 or 1

yo1 = (y+1)/2;
mu = sigmoid(X*w) ;
nll = -sum(yO1l .* log(mu) + (1-y01) .* log(l-mu));

if nargout > 1
g = X’*(mu-y01);
end

if nargout > 2
H = X’*diag(mu.*(1-mu)) *X;
end



Robust regression

= = m m [east squares
e N = [aplace
L a=" m—— student, dof=0.409
L
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e One way to achieve robustness to outliers is to replace the Gaussian

distribution for the response variable with a distribution that has heavy
tails.

e Such a distribution will assign higher likelihood to outliers, without having
to perturb the straight line to “explain” them.



Robust regression

30
20

10 ®

10

20+

-30




nnnnn

distribution, has the following pdf:

1 T —
Lap(z|p,b) = o exp (—' - “')

Here u is a location parameter and b > 0 is a scale parameter. The mean
of the distribution is u, and the variance is 2b2.

The MLE for 1 in a Laplace distribution is the median of the data, whereas
the MLE for ¢ in a Gaussian distribution is the mean of the data

If we use the Laplace distribution as the output density for linear regres-
sion, we get the following log-likelihood:

N N
1
logp(D|w,b) = > _log Lap(y;|w" x;,b) = —N log(2b) — 5 d "y — wx;



Student T distributiol” /-

The Student T distribution also has pdf: e T e

...-

—(55)
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2 2
1+ =
Tlalwo') x |1+5 (L
where p is the mean, 02 > 0 is the scale parameter, and v > 0 is called
the degrees of freedom.

If v =1, it is known as the Cauchy distribution. As v — oo, the distri-
bution rapidly approaches a Gaussian. Use v ~ 3; bigger than 2 to ensure
it has finite variance and less than 5 to maintain heavy tails.

The Student has heavier tails than the Laplace, making it more robust.

Student distribution for robust linear regression model:

2 2

p(yqz|Xi,W,0 77/) — T(y»@!WTXz',U ,V)



Unconstrained optimization
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