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MLE - definition
• The idea of Maximum Likelihood Estimation (MLE) is to find the

parameters θ that maximize the probability of the data D given these
parameters:

θ̂ := arg max
θ

log p(D|θ)

• MLE assumes that the data has been generated by a distribution p(D|θ0)
for some true parameter θ0.



MLE - properties
• For independent and identically distributed (i.i.d.) data from p(x|θ0),

the MLE minimizes the Kullback-Leibler divergence:

θ̂ = arg max
θ

n∏

i=1

p(xi|θ)

= arg max
θ

n∑
log p(xi|θ)

θ
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|
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θ

1
N
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log p(xi|θ)− 1
N

N∑
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θ

1
N
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log
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p(xi|θ0)

−→ arg min
θ

∫
log

p(xi|θ0)

p(xi|θ)
p(x|θ0)dx



MLE - properties
• Under smoothness and identifiability assumptions,

the MLE is consistent:

θ̂
p
→ θ0

or equivalently,

plim(θ̂) = θ0

or equivalently,

lim
N→∞

P (|θ̂ − θ0| > α)→0

for every α.



MLE - properties

• The MLE is asymptotically normal. That is, as N →∞, we have:

θ̂ − θ0 =⇒ N(0, I−1)

where I is the Fisher Information matrix.

• It is asymptotically optimal or efficient. That is, asymptotically, it has
the lowest variance among all well behaved estimators. In particular it

•
the lowest variance among all well behaved estimators. In particular it
attains a lower bound on the CLT variance known as the Cramer-Rao
lower bound.

• But what about issues like robustness and computation? Is MLE always
the right option?



Bias and variance
• Note that the estimator is a function of the data: θ̂ = g(D).

• Its bias is:
bias(θ̂) = Ep(D|θ0)(θ̂)− θ0 = θ̄ − θ0

• Its variance is:
V(θ̂) = Ep(D|θ0)(θ̂ − θ̄)2

• Its mean squared error is:• Its mean squared error is:

MSE = Ep(D|θ0)(θ̂ − θ0) = (θ̄ − θ0)
2 + Ep(D|θ0)(θ̂ − θ̄)2





MLE for the univariate Gaussian distribution
• In the case of iid data sampled from a univariate Gaussian, the log-

likelihood is given by

ℓ(µ, σ2) =

N∑

i=1

logN (xi|µ, σ
2) = −

1

2σ2

N∑

i=1

(xi − µ)2 −
N

2
lnσ2 −

N

2
ln(2π)

• To find the maximum of this function, we set the partial derivatives to 0
and solve. (We should check that the second derivative is positive.)

µ̂ =
1

N

N∑

i=1

xi = x

σ̂2 =
1

N

N∑

i=1

(xi − x)2 =

(
1

N

N∑

i=1

x2i

)

− (x)2

• The quantities
∑

i xi,
∑

i x
2
i and N are called the sufficient statistics

of the data, since they capture all the relevant information needed for
estimating the parameter.





MLE for the Bernoulli distribution
• We toss a coin N times and record the sequence of heads and tails, D =

(x1, x2, . . . , xN ). How do we estimate the probability of heads from this?

• The log-likelihood is given by

ℓ(θ) =

N∑

i=1

log Ber(xi|θ) =

N∑

i=1

log
[
θxi(1− θ)1−xi

]
= N1 log θ +N2 log(1− θ)

where N1 =
∑

i xi is the number of heads and N2 =
∑

i(1 − xi) is thewhere N1 =
∑

i xi is the number of heads and N2 =
∑

i(1 − xi) is the
number of tails (these are the sufficient statistics).

• To find the MLE, we find the maximum of this expression as follows:

dℓ

dθ
=

N1
θ
−

N2
1− θ

= 0

θ̂ =
N1

N1 +N2

where N1 +N2 = N .



MLE for binary logistic regression
• Recall that binary logistic regression has the form

p(yi|xi,w) = Ber(yi|sigm(wTxi))

where sigm(η) = 1/(1 + e−η) and yi ∈ {0, 1}. Let πi = sigm(wTxi).

• Then the negative log-likelihood of all the data is given by

N∑
J(w) = −

N∑

i=1

log[π
I(yi=1)
i × (1− πi)

I(yi=0)]

= −
N∑

i=1

[yi log πi + (1− yi) log(1− πi)]

This is also called the cross-entropy error function.



MLE for binary logistic regression
• The gradient and Hessian of J(w) are given by:

g(w) =
d

dw
J(w) =

∑

i

(πi − yi)xi = XT (π − y)

H =
d

dw
g(w)T =

∑

i

(∇wπi)x
T
i =

∑

i

πi(1− πi)xix
T
i = XTdiag(πi(1− πi))X

• One can show that H is positive definite; hence the NLL is convex and•
has a unique global minimum.

• To find this minimum, we will however have to learn a few things about
optimization.



Revision
• Let x be an n-dimensional vector, and f(x) a scalar-valued function. The

gradient vector of f with respect to x is the following vector:

∇xf(x) =






∂f(x)
∂x1
∂f(x)
∂x2
...

∂f(x)
∂xn









∂xn




Derivative of a scalar product

∇x a
Tx = a

Derivative of a quadratic form

∇x x
TAx = (A+AT )x

If A is symmetric, this becomes ∇xx
TAx = 2Ax.



• The Hessian matrix of a scalar valued function with respect to x, written
∇2
x
f(x) or simply as H, is the n× n matrix of partial derivatives,

∇2
x
f(x) =






∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2

· · · ∂2f(x)
∂x2∂xn

...
...

. . .
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

· · · ∂2f(x)
∂x2

n






Obviously this is a symmetric matrix, sinceObviously this is a symmetric matrix, since

∂2f(x)

∂xi∂xj
=
∂2f(x)

∂xj∂xi
.

• We can think of the Hessian as the gradient of the gradient, which can be
written as

H = ∇x(∇T
x
f(x))

• For the quadratic form f(x) = xTAx, the gradient vector is (A+AT )x,
so the Hessian is A+AT . If A is symmetric, this is 2A.









Problems with the MLE
• Computation can be expensive.

• It suffers from overfitting.

• It provides a point-estimate (best guess) of the parameters. I does not
give any measure of uncertainty in this guess.

• It migh not be the best option when the data generating mechanism is
outside the model class. Even if it finds the closest solution in terms of

•
outside the model class. Even if it finds the closest solution in terms of
KL divergence, other distance metrics might be more appropriate.
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